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Abstract The classical Local Cubic Law (LCL) generally overestimates flow through real fractures. We
thus developed and tested a modified LCL (MLCL) which takes into account local tortuosity and roughness,
and works across a low range of local Reynolds Numbers. The MLCL is based on (1) modifying the aperture
field by orienting it with the flow direction and (2) correcting for local roughness changes associated with
local flow expansion/contraction. In order to test the MLCL, we compared it with direct numerical simula-
tions with the Navier-Stokes equations using real and synthetic three-dimensional rough-walled fractures,
previous corrected forms of the LCL, and experimental flow tests. The MLCL performed well and the effec-
tive errors (d) in volumetric flow rate range from 23.4% to 13.4% with an arithmetic mean of |d| (<|d|>)
equal to 3.7%. The MLCL is more accurate than previous modifications of the LCL. We also investigated the
error associated with applying the Cubic Law (CL) while utilizing modified aperture field. The d from the CL
ranges from 214.2% to 11.2%, with a slightly higher <|d|>5 6.1% than the MLCL. The CL with the modified
aperture field considering local tortuosity and roughness may also be sufficient for predicting the hydraulic
properties of rough fractures.

1. Introduction

The fundamental understanding of fluid flow and transport processes through connected fractures is critical
for many environmental and engineering problems and geophysical phenomena. However, detailed charac-
terization of flow and transport processes within complex fracture networks remains a challenge, thus
numerous studies have been focused on discrete single rough-walled fractures [e.g., Zimmerman et al.,
2004; Cardenas et al., 2007].

Incompressible, steady state fluid flow through single fractures is governed by the Navier-Stokes equations
(NSE) and the mass conservation equation:

q u � rð Þu52rp1lr2u (1)

r � u50 (2)

where q is fluid density, u 5 [u, v, w] is velocity vector, p is total pressure, and m is dynamic fluid viscosity.
Even though the direct solution of the NSE is theoretically the most accurate approach for analyzing the
hydraulic properties of fractures, solving the NSE through three-dimensional (3-D) rough-walled fractures is
a substantial computational endeavor with only a few studies having successfully implemented this [Zim-
merman et al., 1991; Sisavath et al., 2003].

To circumvent the difficulty in solving the NSE, the nonlinear/inertial terms in the NSE are often neglected.
Vertical integration of the resulting simplified NSE, now called the Stokes equation, results in the well-
known Cubic Law (CL) [e.g., Snow, 1969; Witherspoon et al., 1980] that shows the volumetric flow rate
through a fracture is a linear function of the head gradient and the cube of the hydraulic aperture, with the
latter representing the transmissivity of the fracture. However, the surface roughness of fractures has a sig-
nificant influence on fluid flow, which leads to deviation of the flow rate predicted by the CL from the actual
flow rate [e.g., Brown, 1987; Zimmerman et al., 1992]. The CL’s accuracy can be improved by incorporating a
correction factor based on fracture roughness [Renshaw, 1995]. Another approach is to consider explicitly
the spatial variability in aperture field that results in what is known as the classical Local Cubic Law (LCL)
[Zimmerman et al., 1991; Mourzenko et al., 1995; Nicholl et al., 1999].
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The classical LCL, sometimes called the Reynolds equation, has been extensively applied in investigations of
fluid flow, and related conservative and reactive solute transport through a single fracture [e.g., Zimmerman
et al., 1991; Nicholl et al., 1999; Elkhoury et al., 2013]. It reads as:

r � b3rp
� �

50 (3)

where b is the apparent (or vertical) local aperture, which is the difference in height between the top and
bottom fracture surfaces, and b3 constitutes the local fracture transmissivity.

One of the limitations of the classical LCL is the assumption that the fracture midsurface is a flat plane,
whereas natural fractures characteristically exhibit a tortuous plane [Ge, 1997]. Additionally, local velocity
profiles in real fractures deviate from the assumed parabolic shape, i.e., Poiseuille flow, due to roughness
and inertial effects. Therefore, there are outstanding questions regarding the broad applicability of the LCL.
Numerous efforts have attempted to quantify criteria wherein the LCL can be used in lieu of the NSE, but
the results have been mixed. For example, Brush and Thomson [2003] defined geometric and kinematic con-
straints that ensure the validity of the LCL. Brown et al. [1995] earlier suggested the same constraint, Re< 1,
accounting for inertial force, where Re is the Reynolds Number. On the contrary, Konzuk and Kueper [2004]
found that even at Re< 1, the LCL could overestimate flow rate by at least 1.75 times. Another study
showed that the LCL overestimated flow rates by 22–47% [Nicholl et al., 1999]. The discrepancy boils down
to the assumptions underlying the traditional LCL, i.e., neglection of either tortuosity, roughness, or inertial
force in previous studies.

Ideally, the effective hydraulic properties of fractures could be calculated exclusively from geometric infor-
mation, and therefore flows can in turn be predicted simply with the additional knowledge of head gra-
dients. Achieving this first requires a more comprehensive representation of local processes that will be
used for upscaling. Thus, to improve the accuracy of the LCL, Ge [1997] derived a governing equation of the
LCL for characterizing fluid flow through 3-D rough-walled fractures that uses a local coordinate system to
allow for local tortuosity. However, the verification of the governing equation was done only for two-
dimensional (2-D) nonparallel and parallel sinusoidal fractures. Brush and Thomson [2003] and Mallikamas
and Rajaram [2010] applied the LCL while accounting for local roughness and/or tortuosity in 3-D systems,
but their results were verified using the Stokes equations, and not the full NSE with inertial effects.

Accurate estimation of flow process through rough and tortuous fractures aids in understanding transport
problems in fractured media, and can provide a method to estimate effective transport parameters based
on the geometric properties of fractures [Wang and Cardenas, 2014]. For example, Detwiler et al. [2000]
found through their experiments that a velocity field generated from solving the LCL underestimates the
longitudinal dispersion coefficient by 20–37% when the Peclet Number increases from 0 to �800. To com-
pensate for the discrepancy in flow rate from using the LCL, Detwiler et al. [2002] introduced a coefficient
based on experimental flow information. However, without prior knowledge from flow experiments, the
potential application of this correction for the LCL in simulating transport process is not clear.

We present the modified LCL (MLCL) in this study with the goal of developing a robust and accurate but
easy to implement method for predicting fracture hydraulic properties and flow rates. Our approach com-
bines ideas from Ge [1997], for correcting for local tortuosity, from Renshaw [1995], for correcting for local
roughness, and additionally considers low inertial effects where local Re� 1. To assess the performance of
the MLCL, effective and local flow rates based on the MLCL are compared to those from direct numerical
simulations with the NSE, previous modified versions of the LCL, and experimental flow tests for 3-D rough-
walled fractures.

2. Development of Modified Local Cubic Law

2.1. Consideration for Tortuosity
Tortuosity is a macroscopic feature defined as the ratio of actual flow path length over a straight-line dis-
tance. Normally, the actual flow field can be obtained through either direct simulation or experimental
observation, and it varies depending on aperture field and Re. Thus, it is difficult to correct the LCL with
macroscopic tortuosity since this rests on precise knowledge of flow paths. To avoid this situation, here we
consider the geometric tortuosity (hereafter, we simply use tortuosity, s) as the factor defining or a
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surrogate for a tortuous flow
path. s is defined as the ratio of
the actual 3-D tortuous midsur-
face plane to the projected
area in the x-y 2-D plane; this
follows the work of Ge [1997],
and it represents the increased
flow path length due to varia-
tion of the midsurface plane of
the aperture field. To deter-
mine local tortuosity, we define
ds as the actual length of a
flow path and dx as the
straight-line distance between
the ends of the flow path as
illustrated in Figure 1. Thus by
definition, local tortuosity is
the ratio of ds to dx. Since the
tortuosity varies over space,
any given interior apparent
aperture could be thus trans-
lated into a pair of flow-

oriented apertures for two contiguous flow cells. For example, the flow-oriented aperture field bf in the x
direction (and also similarly in the y direction) for the left or upstream flow cell is approximated by:

bf ðxÞ5b xið Þcos 1xið Þ (4)

where b(xi) is the apparent aperture and /xi is the flow orientation angle estimated from the definition of
tortuosity for the left flow cell (Figure 1). Moreover, since tortuosity varies with direction, the apparent aper-
ture field can be transformed into an anisotropic flow-oriented aperture field bf, with independent x and y
components in the principal directions. Components in other directions are eliminated that is also a funda-
mental assumption behind the LCL.

The transmissivity vector (T) between cells can be estimated using a harmonic mean of adjacent flow-
oriented apertures in the x and y directions, which has been tested to be the most accurate approximation
at local scale [e.g., Nicholl et al., 1999; Nicholl and Detwiler, 2001]. For example, the component of T in the x
direction (Tx) can be approximated by:

Tx5
2bf xi11ð Þ3bf ðxiÞ3

bf xi11ð Þ31bf ðxiÞ3
� 1

12l
(5)

Replacing b3 in equation (3) with T (equation (5)) and accounting for the tortuosity translates the LCL from
the local coordinate (i.e., the actual flow path direction s) to the global coordinate (i.e., the x and y
directions):

r � Tx
@p
@x
@x
@s

i
!

1Ty
@p
@y
@y
@s

j
!

� �
5r � Tx

@p
@x

cos 1xð Þ i
!

1Ty
@p
@y

cos 1y

� �
j
!

� �
50 (6)

where i
!

and j
!

represent the unit vectors in x and y directions, respectively.

2.2. Rationale for Consideration for Local Roughness and Weak Inertial Effects
Many experimental and numerical studies have illustrated the effects of roughness and inertia on flow
through fractures [e.g., Brown, 1987; Thompson and Brown, 1991]. For example, nonparabolic velocity profile
developed in a sinusoidal fracture can result in the overestimation of flow rate predicted by the LCL [Brush
and Thomson, 2003]. The formation of an eddy in rough fractures represents the extreme case of a nonpara-
bolic velocity profile. Recent researches have shown eddies can form and grow thereby reducing the

Figure 1. Definition of flow-oriented apertures (blue line gh and red line mn) modified from
cd in the x direction accounting for tortuosity of two contiguous flow cells. ab, cd, and ef are
apparent apertures b(xi), b(xi 1 1), and b(xi 1 2), respectively, i, k, and l are the central aperture
points. ik represents the actual length of a flow path (ds), ij is the straight-line distance (dx)
between the ends of the flow path. Tortuosity is defined as ds/dx with calculated orientation
angle /xi. Calculation of flow-oriented aperture follows the above equations.
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hydraulic conductivity of fractures and pores [Cardenas et al., 2007; Chaudhary et al., 2011, 2013; Lee et al.,
2014]. Moreover, eddy geometry is dependent on flow direction and inertial force [Chaudhary et al., 2011].

In this study, we take into account local roughness and low Re to further improve equation (6). Since aper-
ture variability and local aspect ratio are key local roughness factors that reduce the accuracy of simple har-
monic averaging for calculation of flow rates [Basha and El-Asmar, 2003], we focus on these two factors. To
distinguish the bulk roughness, a global or macroscale feature as referred to by Brush and Thomson [2003],
from local roughness in this study; hereafter, we refer only to local roughness and associated local aperture
gradient and aspect ratio, unless otherwise stated.

The first factor of local roughness is aperture gradient (R1) that describes local fracture expansion or con-
traction relative to one with parallel walls. Expansions or contractions are effectively what constitutes local
roughness as a fracture without expansions/contractions is basically represented by parallel plates, i.e.,
where flow follows Poiseuille flow with perfect parabolic velocity profile that is the basis for the classical
LCL. In this study, R1 is defined as:

R15
bf xi11ð Þ2bf ðxiÞ

dx
(7)

where the calculations of flow-oriented apertures bf(xi), and bf(xi11) are illustrated in Figure 1. R1 can be pos-
itive or negative depending on whether the fracture expands or contracts relative to the flow direction. The
range and arithmetic mean value of R1 on both x and y directions are listed in Table 1. The R1 field may be
anisotropic with independent x and y components since the bf field is also anisotropic in the principal direc-
tions. The resolution of R1 depends on the fracture resolution as shown in Table 1.

The second factor of local roughness, the dimensionless length (R2), represents the aspect ratio of the frac-
ture. The definition of R2 is:

R25
dx

bf ðxiÞ
(8)

where dx is the horizontal resolution of the aperture field and bf (xi) is the upstream flow-oriented aperture
for each flow cell (Figure 1). R2 may also be anisotropic like R1, with independent components in the x and
y directions.

Table 1. Input Parameters for Synthetic Fracture Generation Using the Program SynFrac [Ogilvie et al., 2006], and Statistical Properties of Both Real Fractures Mapped Through
High-Resolution X-ray Computed Tomography and Synthetic Fracturesa

Parameters

HRXCT Synthetic

H1 H2 H3 S1 S2 S3 S4 H2R

Length (mm) 116.1 97.9 80.3 95.9 96.8 100.0 100.0 97.9
Width (mm) 140.0 121.8 94.8 95.9 96.8 100.0 100.0 121.8
Resolution (mm2) 0.077 0.068 0.038 0.035 0.036 0.038 0.038 0.068
Mismatch wavelength (mm) 4.5 2.5 2.3 8.0
Transition length (mm) 40.0 90.0 72.0 31.0
Maximum matching fraction 0.98 0.99 0.99 0.99
Minimum matching fraction 20.02 20.06 0.00 20.09
Fractal dimension 2.64 2.69 2.78 2.67
Anisotropy 1.02 1.07 0.76 1.01
rb (mm) 0.59 0.60 0.86 0.36 0.21 0.35 0.31 1.18
<b> (mm) 1.50 1.91 2.14 1.61 1.02 1.53 1.70 4.22
s 1.033 1.038 1.164 1.062 1.099 1.080 1.080 1.038
R1 211.1 to 12.3 216.6 to 20.2 216.9 to 17.2 25.3 to 5.9 23.9 to 4.1 23.8 to 3.7 23.8 to 3.7 234.4 to 30.3
<|R1|> 0.34 0.25 0.56 0.90 0.67 0.64 0.58 1.64
R2 0.03–4.31 0.04–0.55 0.02–114 0.06–5.13 0.10–2.68 0.068–1.47 0.11–1.86 0.025–0.38
<R2> 0.22 0.08 0.14 0.15 0.23 0.14 0.23 0.07
Re 5 q<u>/l 0.02 0.02 0.05 0.02 0.01 0.01 0.03 0.06

aThe mismatch wavelength, transition length, maximum matching fraction, minimum matching fraction, fractal dimension, and anisotropy are the input parameters for SynFrac.
Details of the fracture generation using the parameters below can be found at Ogilvie et al. [2006]. b represents the apparent aperture with arithmetic mean <b> and standard devia-
tion rb. s refers to the effective tortuosity, defined as the ratio of the tortuous area of the fracture midsurface to its projected area in the x-y plane. R1 and R2 indicate the local rough-
ness as defined in equations (7) and (8), <|R1|> and <|R2|> represent the arithmetic mean values of R1 and R2, respectively. The Reynolds Number (Re) is defined as the ratio of
inertial force to viscous force, where q is a fluid density and l is a dynamic fluid viscosity.
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The tortuosity correction can effectively
transform the local asymmetric aperture
field into piecewise symmetric wedges,
where fluid is assumed to flow along the
wedge centerline. Thus, to further quan-
tify the associated errors with local rough-
ness resulting in nonparabolic velocity
profile, we first conducted CFD simula-
tions of a suite of symmetric 2-D wedges
representing a wide range of R1 (250–
50) and R2 (0–10). This was achieved by
running simulations where bf at one end
was fixed, but bf at the other end and dx
were sequentially increased (Figures 1
and 2) to produce wedges with different
R1 and R2. For each wedge, simulations
were conducted for both flow directions
driven by a pressure gradient. These two
cases have very opposite R1. Further-
more, we increased the pressure gradient
successively to consider the effect of low
inertial force, i.e., varying Reynolds Num-
ber (Re� 1).

The local Re quantifies the ratio of inertial
force to viscous force, which is defined as:

Re5
qbf hui

l
5

qQ
l

(9)

where <u> is the local mean velocity and Q is the volumetric flow rate per unit fracture width. In this study,
we only considered local Re� 1 to ensure local laminar flow. We employed COMSOL Multiphysics to solve
the NSE describing flow through the designed wedges. The simulation results were validated by comparing
numerical simulation results to analytical solutions provided by Basha and El-Asmar [2003]; the maximum
error in predicting volumetric flow rate was less than 0.14% (Figure 3). We only used a fraction of the
designed wedges in this validation because only a minority of the wedges satisfy the condition for the ana-

lytical solution (i.e., the ratio of arithmetic
mean aperture to the fracture length
should be less than 1).

2.3. Correction Coefficient C(R1, R2, Re)
The analytical flow rate QLCL for 2-D frac-
tures calculated with the LCL is approxi-
mated by the harmonic mean of the cubic
aperture multiplied by the pressure gradi-
ent [Silliman, 1989]:

QLCL5
1

12l
LðL

0

1
bf ðxÞ3

dx

� � @p
@x

(10)

where @p/@x is the same pressure gradient
as applied in the numerical wedge models.
Therefore, for flow rate calculations based
on the LCL to match the true flow rates
(i.e., from the CFD simulations), it has to be

0 0.2 0.4 0.6 0.8 1.0

a)
Q

b)
QQ
c)

U*

Figure 2. Normalized velocity (U*) field and streamlines (white lines) of 2-D
wedges with different local aperture gradient R1 and local Reynolds Number Re.
U* is defined as U* 5 U/Umax, where U is the velocity magnitude and Umax is the
maximum velocity magnitude. Black arrows indicate flow direction with flow
rates Q. Expanding fracture (a) corresponds to R1 5 0.5 and Re 5 1.2 with stream-
lines showing nonparabolic velocity profile but no eddy growth; expanding frac-
ture (b) corresponds to R1 5 5 and Re 5 1.02, where streamlines indicate eddy
growth; contracting fracture (c) corresponds to R1 5 25 and Re 5 1.2, with
streamlines showing different eddy geometry compared to fracture in Figure 2b
even though they have identical magnitudes of R1 and Re.

0 0.5 1.0 1.5 2.0
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0.12

0.4
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Figure 3. Simulation errors (EQ) in volumetric flow rate (Q) through symmet-
ric wedges with varying Reynolds Numbers (Re). EQ is defined by EQ 5 (QBash/
QCFD 2 1) 3 100%, where QBash was estimated by using the perturbation
method proposed by Basha and El-Asmar [2003], QCFD was computed by
directly solving the NSE through finite element modeling.
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scaled by the factor C that varies depend-
ing on R1, R2, and Re:

C R1; R2; Reð Þ5 QLCL

QCFD
(11)

This can also potentially correct the analyti-
cal effective aperture by scaling it to an
effective transmissivity which considers
fracture expansion or contraction and low
inertial effects. The factor C was calculated
based on simulations representing various
combinations of R1, R2, and Re (Figure 4).
The discrete function C was generated
based on adaptive increments; we used a
higher resolution where there were larger
gradients. Specifically, increments for |R1|

ranged from �0.5, where 0< |R1|< 3.5, to �2.5, where 3.5< |R1|< 50. Increments for R2 ranged from
�0.01, where 0< R2< 1, to �2, where 1< R2 <10. Moreover, the increments for Re were almost uniform at
�0.1. The discrete data for C are available on line as supporting information.

The correction factor C fundamentally embodies the effects of local roughness and low inertia which are
manifested in the prediction of local velocities and volumetric flow rates (Figure 4). That is, and as expected,
C� 1 since calculations using the LCL with the harmonic mean aperture as the effective transmissivity con-
sistently overestimates the flow rate [e.g., Brown, 1987; Zimmerman et al., 1991; Brown et al., 1995]. The LCL
is missing additional resistance imparted by local roughness and additional inertial losses. This explanation
is also supported by theory [Basha and El-Asmar, 2003].

Moreover, for any given R1 (but excluding R1 5 0), C initially increases with increasing R2 (0< R2< 0.5) but
then decreases with further increases in R2 (0.5< R2< 10); note that the dependence of C on R2 is also par-
tially determined by R1. Since R1 5 0 corresponds to parallel plates, we expect no error with increasing R2
in this case, i.e., C 5 1.

The characteristics of C can be explained generally by the formation of nonparabolic velocity profile against
that predicted from the LCL, and by the extreme case of growth of eddies within the piecewise wedges of
the fracture. Small R2 implies a short fracture wavelength or small aspect ratio, which in turn provides insuf-
ficient room for the fully developed nonparabolic velocity and for eddy growth. The peak of C is at R2 � 0.5,
regardless of R1, which corresponds to the wedge aspect ratio optimal for reducing the effective flow area.
These effects of local fracture aspect ratio on predicting flow rate were not considered in previous studies
[e.g., Nicholl et al., 1999; Brush and Thomson, 2003].

Additionally, R1 rather than Re largely determines C when Re� 1 (Figure 4) for the specific value of R2. This
is supported by the experimental results of Lee et al. [2014], and reflected by the fluid flow following Darcy’s
law at relatively low Re regime [Al-Yaarubi et al., 2005]. That is, Re contributes little to the deviation from lin-
earity of the flow rate. Moreover, flow direction had a trivial impact on C, and C exhibited a fairly but not
perfectly symmetric pattern. This is because fluid flow is different for expanding and contracting fractures
[Cardenas et al., 2009; Chaudhary et al., 2011], which lead to different nonparabolic velocity profiles and
eddy configuration, even if their |R1| and Re are almost the same (Figure 2).

2.4. Modified Local Cubic Law
Equation (6) can be corrected for effects of local roughness and low inertial force through the application of
C, which gives the modified LCL (MLCL):

r � Tx

C
@p
@x

cos 1xð Þ i
!

1
Ty

C
@p
@y

cos 1y

� �
j
!

� �
50 (12)

When the midsurface of the aperture field lies in a smooth plane, i.e., where Ø
!

5 0, and when local rough-
ness and inertial force are negligible, C � 1, the MLCL reduces to the classical LCL. The MLCL is a nonlinear
differential equation with dependent variable p because C is a function of Re; Re in turn depends on p.

Figure 4. Empirical generic correction factor C(R1, R2, Re) based on CFD sim-
ulations, where R1 and R2 are the local roughness defined in equations (7)
and (8), respectively. Re refers to local Reynolds Number.
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3. Methodology

3.1. Real and Synthetic Three-
Dimensional Fractures
Three natural welded Santana tuff samples
collected from Closed Canyon, Big Bend
National Park, Texas, USA, were scanned at
the high-resolution X-ray computed tomogra-
phy (HRXCT) facility at The University of Texas
at Austin. The approach used here was
described in detail by Ketcham et al. [2010]
and Slottke [2010]. The size and horizontal
resolution of the scanned fractures, labeled
with an initial ‘‘H,’’ and its statistical properties
are shown in Table 1. The vertical resolution
for the natural fractures was set at�0.25 mm.

To further test the validity of the MLCL for
various types of fractures, we generated four
self-affine fractures through the program
SynFrac with the same parameters described

by Ogilvie et al. [2006]. Here we used a different resolution/grid spacing to make it more similar to the scanned
real fractures. We generated synthetic fractures with 512 3 512 points per fracture surface, regardless of frac-
ture size, although the sizes were also similar to the scanned fractures. Further, we assigned a minimum
b 5 10 lm whenever aperture is zero in order to maintain mesh quality and due to difficulties in mesh gener-
ation. Therefore, the statistical properties of the synthetic fractures varied slightly from those in Ogilvie et al.
[2006] (Table 1). The synthetic fractures are denoted with an initial ‘‘S.’’ In order to specifically test for local
roughness effects, one of the natural fractures (H2) was further roughened by increasing the local aperture
gradient by 1.5 times; this fracture is now denoted as H2R.

The synthetic fractures used here, to some extent, have been shown to represent the hydraulic properties
of fractures within igneous, sedimentary, and metamorphic rocks [Ogilvie et al., 2006]. The probability den-
sity function of the b fields for the natural and synthetic fractures is shown in Figure 5. In general, aperture
fields for S1–S4 and H2 roughly follow a Gaussian distribution, while aperture fields for H1 and H3 roughly
follow a non-Gaussian distribution skewed toward smaller and larger values, respectively. Moreover, the
artificially generated aperture field H2R created by increasing local aperture gradient shows a bimodal dis-
tribution; this property may probably lead to the difficulty of predicting flow rate by simply using the LCL.
The arithmetic means of b range from 1.00 to 4.22 mm and the standard deviations of b range from 0.20 to
1.18 mm. Although the fracture dimensions are identical, the natural fracture apertures are relatively more
heterogeneous compared to the synthetic fractures (Table 1).

3.2. Direct Numerical Simulations of Flow Fields
The numerical experiments used computational fluid dynamics (CFD) simulations for flow through 3-D frac-
tures. The CFD modeling, where the NSE with gravitational effects ignored was directly solved, was imple-
mented through the generic finite element software COMSOL Multiphysics. We assigned fracture surfaces
(without a skin or rind) and sides as no-slip boundaries on the premise of no interaction with the matrix, and
applied a pressure drop Dp 5 0.01 Pa over the fracture length. Standard fluid properties for water were pre-
scribed: q 5 1000 kg/m3 and m5 1 3 1023 Pa s. The fractures were discretized into �10 million tetrahedral
elements with smaller elements (�0.2 mm) along the boundaries (Figure 6). Numerical experiments were con-
ducted in a high-performance workstation, with each steady state solution taking as much as 2 days to con-
verge. For each fracture case, we conducted a pair of simulations where flow was either in the x or y direction.
Sensitivity analysis showed negligible numerical dispersion for the given mesh discretization schemes.

3.3. Implementation of Modified Local Cubic Law
We solved equation (12) numerically through COMSOL Multiphysics. The equation was solved iteratively
because of its nonlinear nature. The correction with C was implemented via interpolation. That is, at each

Aperture (mm)

Pd
f

H1
H2
H2R
H3
S1
S2
S3
S4

0 2 4 6 8 100

0.1

0.2

0.3

0.4

Figure 5. Probability density function of aperture fields for natural fractures
mapped with HRXCT denoted by labels beginning with ‘‘H’’ and synthetic
fractures generated with the program SynFrac [Ogilvie et al., 2006] denoted
by labels beginning with ‘‘S.’’ One of the natural fractures (H2) was artificially
roughened to generate fracture H2R.
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iteration, in the numerical solution of (12), C was calculated and linearly interpolated, and extrapolated as a
constant value when necessary, based on the discrete data. Re was updated using C during each iteration.

The inlet/outlet boundary conditions were the same as those used for the direct 3-D CFD simulations, but
here we assigned no-flux boundaries for the edges. The rectangle mesh size was specified so that the original
fracture resolution was retained and trivial numerical dispersion occurred. Unlike the direct CFD simulations,
which sometimes took days to converge, the numerical simulations with equation (12) took a few minutes.

3.4. Assessment of the Accuracy of the Modified Local Cubic Law
The potential advantage and advancement of the MLCL in prediction of local velocities and volumetric flow
rate are the combination of all corrective aspects that have been considered and studied separately [Brown,
1987; Zimmerman et al., 1991; Mourzenko et al., 1995; Ge, 1997; Brush and Thomson, 2003; Al-Yaarubi et al.,
2005], including local tortuosity, roughness, and low inertial force.

The overall performance of the MLCL is evaluated via quantifying the effective errors in predicting volumet-
ric flow rates as d:

di5
Qi2QNSE

QNSE
3100% (13)

where QNSE is volumetric flow rate at the outlet boundary calculated in the 3-D CFD simulations (QNSE is
considered as the ‘‘true’’ volumetric flow rate), Qi is volumetric flow rate at the outlet boundary calcu-
lated through equations (3), (6), (12), and (15) (see below), where i 5 equation number.

An alternative way to assess the performance of the MLCL is to break down the effective errors into local
errors ni(x, y) in terms of volumetric flow rate, which is described mathematically by:

ni x; yð Þ5 Qi x; yð Þ2QNSE x; yð Þ
QNSE x; yð Þ 3100% (14)

where QNSE(x, y) is the local vertically integrated volumetric flow rate calculated from CFD simulation results,
and Qi(x, y) is the local volumetric flow rate calculated from equations (3) and (12), where i refers to equa-
tion number or model type, i.e., LCL and MLCL, respectively.

3.5. Comparison of the Modified Local
Cubic Law With Other Models
To highlight the strength of the MLCL, we
conducted numerical simulations using the
governing equation from Ge [1997] through
the finite element method also implemented
in COMSOL Multiphysics, and using the
modified LCL as formulated by Brush and
Thomson [2003] through a finite-volume
approach we implemented in MATLAB. In
the latter, grid blocks serve as control volume
with the modified harmonic average aper-
ture representing the transmissivity at the
face of the control volume. The effective
errors associated with Ge’s derivation and
Brush and Thomson’s formulation are
denoted as dGe and dBrush, respectively; they
are quantified through equation (13), where
Qi is replaced by volumetric flow rate from
the corresponding numerical simulations at
the outlet boundary. We also evaluate ni(x, y)
in the x direction following (14) with calcula-
tions using Ge’s [1997] derivation and Brush
and Thomson’s [2003] approach.

Figure 6. Illustration of the tetrahedral mesh used in the finite element
model of fracture H3. The inset red polygon shows the portion of the
fracture that is illustrated. There are �10 million tetrahedral elements,
with 7.2 3 105 triangular boundary elements and 4144 edge elements.
Element size is about 0.2 mm.
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The Cubic Law (CL) when also scaled by a factor that corrects for the discrepancy between hydraulic and
geometric apertures can give volumetric flow rates similar to those based on the LCL [Renshaw, 1995]. Thus,
we additionally assess the accuracy of the CL in predicting volumetric flow rate following the approximation
recommended by Renshaw [1995], where the modified aperture field accounting for the local tortuosity and
roughness is used, which is described by:

Q5
qg <bfR >

3

12l
WI 11

rbfR

<bfR>

� �2
" #21:5

(15)

where bfR is the modified aperture field with arithmetic mean <bfR> and standard deviation rbfR, g is the
gravitational acceleration, W is the fracture width, and I is the hydraulic gradient. In this case, we neglect
inertial force since we do not have prior knowledge of the Re field to correctly use C. However, for tortuos-
ity/roughness-dominated regimes where the inertial effect is relatively negligible (Re< 1), C(R1, R2, Re) can
be reduced into CR(R1, R2). Therefore, the b field can be transformed into a tensor field with x and y princi-
pal components allowing for consideration of the effects of the local tortuosity and roughness following
equation (12), which is:

bfR5

12lTx cos 1xð Þ
CR

� �1=3

; 0

0;
12lTy cos 1y

� �
CR

 !1=3

2
666664

3
777775 (16)

4. Results

4.1. Failure of the Local Cubic Law
The validity of the LCL (equation (3)) was tested through comparison between volumetric flow rates from
solving the LCL and from solving the NSE with CFD simulations. The simulated flow fields for the studied
fractures are exemplified in Figure 7. The natural fractures clearly demonstrate preferential or channeling
flow following the most conductive region, whereas the synthetic fractures show more dispersed flow paths
without apparent preferential flow. The artificially roughened natural fracture (H2R) produced slow flowing
or stagnation and/or recirculation zones as illustrated by the broader areas with blue colors (Figure 7; blue
corresponds to smaller velocities) near the fracture walls.

The LCL is widely known to overestimate flow rate through fractures even at low Re (<1) regimes [Nicholl
et al., 1999]; our results further confirm this (Figure 8). The effective errors (d3) in using the LCL range from
22.0% to 70.7% (Table 2), with the magnitude depending on the geometric properties of fractures, i.e.,
roughness and tortuosity. Even worse, the local error (nLCL) in volumetric flow rate defined in equation (14)
may increase up to 200% (Figures 9 and 10a). Not only do our results agree with previous studies showing
overestimation of bulk flow rates [Zimmerman and Yeo, 2000; Zimmerman et al., 2004], the results also high-
light the overestimation in local flow rates, with only a minority of nLCL below 0 (Figure 10a). The results
show, however, that underestimation of local flow rate is possible via solving the MLCL. This can be caused
by inherent deficiencies with correcting through C to reproduce more complex local nonparabolic velocity
profiles at wedge boundaries associated with local roughness.

Natural fractures have prominent areas of high nLCL showing long-range correlation effect, whereas the syn-
thetic fractures show a more dispersed pattern of nLCL with random distribution (Figure 9). The probability
density functions of nLCL for all studied fractures show a fairly normal distribution, with median values greater
than 0 that varies from fracture to fracture (Figure 10a). The patterns in nLCL integrate contributions from aper-
ture, tortuosity, and roughness. To potentially identify individual contributions, we plot nLCL as defined by
equation (14) against aperture (Figure 11), tortuosity s (Figure 12), and aperture gradient R1 (Figure 13).

nLCL, somewhat surprisingly, generally increases with aperture, with a slight exception for H1 (Figure 11),
but has no clear trend with s and R1 (Figures 12 and 13). This shows that the aperture values may dominate
over s and R1 in determining nLCL for our studied fractures. The signal of nLCL induced by s and R1 might be
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smeared out by aperture, such that they barely reach a systematic trend in the dependence of nLCL on s
and R1 (Figures 12 and 13).

4.2. Accuracy and Validity of the Modified Local Cubic Law
The MLCL (equation (12)) is first verified using reliable CFD simulations of flow through natural and syn-
thetic fractures in terms of predicting bulk volumetric flow rate. For Q12 derived from the MLCL, d12 ranges
from 23.3% to 13.4% with arithmetic mean <|d12|>5 3.7% (Figure 8 and Table 2). Despite the different
types of fractured rocks representing a range in spatial heterogeneity, effective volumetric flow rates pre-
dicted from the MLCL agree quite well with that from CFD simulations.

Not accounting for tortuosity contributes the most effective error relative to contributions from local rough-
ness and inertia for most of the studied fractures with relatively smooth surfaces (Figure 8 and Tables 1 and
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Figure 7. Three-dimensional fracture velocity fields (U*, denoted by the color) from CFD simulations. U* is defined as U* 5 U/Umax, where
U is the velocity magnitude and Umax is the maximum velocity magnitude. The fractures correspond to the fractures in Figure 5.
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2). On the contrary, for roughened fracture
H2R, effective error arising from the LCL
will be significantly reduced by correction
with C rather than solely correcting for
tortuosity. In general, the classical LCL
overestimates volumetric flow rate with d3

ranging from 22.0% to 70.7% with
<|d3|>5 40.8% (Table 2) depending on
the degree of tortuosity and roughness.
After accounting for tortuosity through
equation (6), d6 decreases substantially
with <|d6|>5 9.3%. Accounting for the
local roughness and inertial effects via the
MLCL further improves the performance
of the LCL with <|d12|> decreasing to
3.7%.

To further test the validity of the MLCL,
we compared predicted volumetric flow
rates to experimentally measured flow
rates for a rough-walled fracture mapped
in high resolution, which was described
and studied by Cardenas et al. [2007]. The

flow experiments were described by Slottke [2010]. The experiments ranged from Darcy to Forchheimer
flows with varying imposed head gradients [Slottke, 2010]. We selected three cases with increasing Re where
Darcy flow still holds. The evaluation of d12 was done by replacing QNSE in equation (13) with volumetric
flow rates from the experimental flow tests. The resultant d12 is 2.3%, 6.0%, and 9.1% which reveals the
robustness of the MLCL for predicting actual flow rates.

Moreover, the MLCL reduces local errors by improving the prediction of local flow rate. Using the classical
LCL, the probability density function of nLCL follows a normal distribution with a large standard deviation
and median value greater than 0. Using the MLCL, the standard deviation in nMLCL is reduced and the
median value becomes close to 0 (Figure 10). However, the broad relationships between n and fracture geo-
metric (Figures 11–13) are similar for both the LCL and MLCL. That is, the contribution to nMLCL from aper-
ture is systematic compared to that from tortuosity and roughness; the same patterns were observed for
nLCL. Figure 12 also shows that, to some extent, the MLCL is likely to underestimate local flow rate when 1/
s< 0.6. s is tortuosity as defined in Figure 1.

Figure 8. Statistics of effective errors (d) shown by Box-Whisker plots. The
effective errors are between ‘‘true’’ volumetric flow rates taken from CFD simu-
lations and different versions of the LCL and CL, i.e., equations (3), (6), (12),
and (15), Ge’s [1997] derivation and Brush and Thomson’s [2003] formulation.
Negative values of d indicate underestimation of flow rate; positive values cor-
respond to overestimation. For quartiles, central mark (red line) refers to the
median (50%), and the edges of the box are the 25th and 75th percentiles,
respectively. The whiskers extend to the minimum and maximum data that
are included in statistical analysis, while the extreme data are excluded (red
crosses).

Table 2. Effective Errors in Volumetric Flow Rate (d) Predicted Using Different Versions of the LCL and CL, i.e., Equations (3), (6), (12),
and (15), Ge’s [1997] Derivation and Brush and Thomson’s [2003] Formulation Compared to that Calculated Through CFD Simulationsa

Fracture Direction d3 (%) d6 (%) d12 (%) d15 (%) dGe (%) dBrush (%)

H1 x 22.03 8.00 7.08 13.76 14.10 29.71
y 26.70 20.61 0.33 214.24 9.15 22.99

H2 x 24.39 6.71 5.87 11.24 8.17 21.41
y 20.64 8.84 7.93 9.69 11.38 18.69

H3 x 57.87 24.03 22.36 2.23 7.76 39.86
y 32.00 4.34 2.93 5.79 14.67 229.18

S1 x 63.19 24.35 21.89 25.38 17.55 21.10
y 63.99 26.55 23.44 28.55 16.41 22.24

S2 x 37.53 22.41 20.34 26.06 13.10 2.29
y 37.90 25.58 23.26 28.71 11.56 20.31

S3 x 28.87 21.92 20.59 23.13 10.38 0.93
y 29.16 22.75 21.03 22.88 10.15 0.73

S4 x 35.54 3.51 1.56 0.37 14.58 5.64
y 35.43 3.08 1.01 20.96 14.47 6.03

H2R x 66.49 38.91 6.81 1.57 50.10 34.38
y 70.71 46.69 13.38 2.62 59.03 65.86

aThe statistics of effective errors can be found in Figure 8.
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5. Discussion

5.1. Performance of the Modified Local Cubic Law Relative to Other Models
The MLCL performs better than Ge’s and Brush and Thomson’s approaches (Figure 8 and Table 2). For the
studied fractures, <|dGe|> is 17.7% and <|dBrush|> is 15.5%; both methods are less accurate than <|d12|>
(Table 2). Moreover, the standard deviation of |dBrush|, denoted as r|dBrush|, is 18.9%, followed by
r|dGe| 5 14.8% for Ge’s derivation, and the MLCL has the lowest r|d12| 5 3.6% (Figure 8).

We also analyzed how d changes with increasing combined aperture deviation and tortuosity for differ-
ent versions of the LCL (Figure 14). For relatively smooth fractures, |dMLCL| (i.e., |d12|) and |dGe| roughly
follow the same trend for the studied fractures with values fluctuating about their mean, but |dMLCL| is
always less than |dGe| because of the MLCL’s improvements over Ge’s governing equation by allowing
for local roughness and inertial effects. Moreover, a previous study confirmed that Ge’s theory is more
appropriate for tortuous than rougher fractures [Nicholl et al., 1999]. Our results further show the short-
comings and applicability of Ge’s theory. It fairs poorly when applied to the roughened fracture H2R,
but performs relatively well for the more tortuous fracture H3 (Figure 14 and Table 2). Figure 10c illus-
trates the performance of Ge’s derivation when applied to a rougher fracture; the median of nGe for
H2R deviates further away from 0. The MLCL corrects for this shortcoming by considering for the con-
vergence and divergence in the aperture field.

For relatively smooth fractures, flow modeling with the finite-volume method with effective transmissivity
based on Brush and Thomson [2003] predicts volumetric flow rates better than the MLCL (Figure 14); that is
|dBrush|< |dMLCL|. However, |dBrush| increases for rougher and more tortuous fractures, while |dMLCL| remains
<10%. Similar to the effective error, the local error nBrush follows a normal distribution with median value
close to 0 for relative smooth fractures. But the median of nBrush deviates from 0 for the more tortuous frac-
ture (H3) and the roughened fracture (H2R) (Table 2 and Figure 10d). Yet, the MLCL’s accuracy for such cases
still holds.

50

100

5000 100

80

60

40

20

0

120

100

0 20 40 60 80

80

60

40

20

0
0 20 40 60 80

x (mm)

y 
(m

m
)

y 
(m

m
)

0 50 100

80

60

40

20
0

100

x (mm)
0 20 40 60 80

80

60

40

20

0
x (mm)x (mm)

H1 H2
80

60

40

20

0
0 20 40 60 80

H3

0 20 40 60 80

80

60

40

20

0

S1 S2 S3 S4

H2R

80

60

40

20

0

120

100

0 20 40 60 80

0 50 100 150 200

ξLCL(x, y) (%)

Figure 9. Spatial distribution of local error (nLCL) in local volumetric flow rate by using the classical Local Cubic Law (LCL). n(x, y) is defined in equation (14). The fractures correspond to
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The MLCL is shown to be an accurate predictor for effective volumetric flow rate, but the fluctuation in
|dMLCL| is counterintuitive since we expect that |dMLCL| would increase with global roughness and tortuosity.
One possible reason could be attributed to the construction of C; it only considers zero-velocity in the z
direction on the wedge boundary with specified constant pressure, while this is not the case for the rough
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fracture, which might lead to different behavior in C. Although the method of developing C is not perfect,
the overall MLCL’s performance is quite good (Table 2). Future studies could explore C which allows for non-
parabolic velocity profiles on the boundary in order to further improve the MLCL.

5.2. Application of the Modification to the Cubic Law
Overall, the CL with modified aperture performs well in terms of matching the volumetric flow rate
from CFD simulations at laminar regimes. Effective errors in flow rate d15 range more broadly from
214.2% to 13.8%, with just a slightly higher mean of 6.1% relative to that resulting from the MLCL (Fig-
ure 8 and Table 2). Though, unlike other previous modified versions of the LCL, the modified CL is suffi-
cient to estimate an effective flow rate for rougher fracture H2R. Using the CL method without taking
into account local tortuosity and roughness would result in effective errors (d) ranging from 278.0% to
28.8%, with arithmetic mean and standard deviation of absolute value (|d|) equal to 40.4% and 18.6%,
respectively (results are not shown here). Clearly, the CL when implemented with the modified aperture
field is greatly improved and could be an accurate predictor for the hydraulic properties of single frac-
tures that are tortuosity/roughness dominated. That is, the predicted hydraulic properties, and by conse-
quence the predicted volumetric flow rates, would be similar to those calculated via direct numerical
simulations.
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5.3. Limitation of the Modified Local
Cubic Law
Although the MLCL improves the perform-
ance of the classical LCL, there are still a
few assumptions undermining its per-
formance in terms of completely replacing
the NSE. After all, a 2-D vertically-inte-
grated version of NSE cannot fully repre-
sent the 3-D NSE. The key limitation of the
MLCL rests on, as mentioned previously,
the determination of C. Recall that C was
estimated based on fluid flow through
simple 2-D symmetric wedges with con-
stant pressure boundary conditions, and
thus perfectly parabolic velocity profiles.
However, flow through local 3-D asym-
metric wedges with nonparabolic velocity
boundary conditions is expected to occur.
Moreover, eddies may occupy several
neighboring 3-D wedges; eddies are con-
strained to the 2-D wedges in our case.
Additionally, inertial force is not fully con-
sidered in this study in order to generate
a more comprehensive form for C (here

local Re� 1 only). Laminar flow through 3-D rough-walled fractures may lead to local Re> 1 and our current
version for C does not account for this. These aspects should be explored in the future by using the same
approach presented here.

Furthermore, the MLCL is based on the premise of absence of the off-diagonal terms in the tensorial
hydraulically equivalent aperture (equation (16)) and transmissivity (equation (12)). That is, we assume the
global coordinate is aligned with the local principal axes, even though this assumption may be violated.
Future studies should thus focus on generating C using 3-D wedges with the application of various bound-
ary conditions to further improve the MLCL. This will allow for the simultaneous consideration of the full
transmissivity tensor with local principal axes uniquely depending on the local midsurface of fractures [Mal-
likamas and Rajaram, 2010]. In spite of those intrinsic shortcomings, the current version of the MLCL per-
forms well in terms of predicting effective and local flow rates, and provides a viable method for further
consideration of a broad range of Re and realistic nonparabolic velocity profiles within and on the boundary
of 3-D wedges.

6. Summary and Conclusions

The Local Cubic Law (LCL) (equation (3)) is a widely applied model for predicting fluid flow field in fractures.
However, there are still unresolved issues in the application of the LCL including errors due to local tortuos-
ity, roughness, and inertial effects. We present the modified Local Cubic Law (MLCL) (equation (12)) that cor-
rects the LCL for the sources of error. To test the validity of the MLCL with direct simulations and physical
experiments, we used maps of natural fractures, synthetic fractures generated by the program SynFrac, and
one artificially roughened fracture produced by increasing the local aperture gradient of one of the natural
fracture maps.

Overall, the MLCL performs better than previous versions of the LCL regardless of fracture local tortuosity
and roughness. For the studied fractures, the effective errors (d) (equation (13)) of the MLCL range from
23.4% to 13.4 with arithmetic mean of |d| (<|d|>) equal to 3.7%. While <|d|> are 40.8% for the traditional
LCL, 17.7% for Ge’s model, and 15.1% for Brush and Thomson’s formulation (Figure 8). Importantly, for more
tortuous and rougher fractures, the modified version of the LCL proposed by Brush and Thomson [2003]
leads to considerable errors in predicting effective and local volumetric flow rates (Figures 8 and 10 and

Figure 14. Effective errors (d) for different natural and synthetic fractures plot-
ted for varying products of aperture deviation (rb) and effective tortuosity (s).
The error is defined in equation (13) between ‘‘true’’ volumetric flow rates
taken from CFD simulations and different versions of the Local Cubic Law, i.e.,
modified LCL (MLCL) developed in this study, Ge’s [1997] deviation, and Brush
and Thomson’s [2003] formulation. s is the ratio of the tortuous area of the
fracture midsurface to its projected area in the x-y plane. b is the apparent
aperture with standard deviation (rb). Dashed lines with circles correspond to
flow rates in the x direction, while solid lines with squares are for the y
direction.
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Table 2). Furthermore, Ge’s model performs relatively well for tortuous fractures, but its performance wor-
sens for rougher fractures (Table 2). However, using the Cubic Law with a modified aperture field will
improve the prediction of effective volumetric flow rate with only a slightly higher <|d|>5 6.1% than the
MLCL. Importantly, the application of the MLCL to the modified CL allows for predicting the fracture hydrau-
lic properties based on the geometric information within a low range of local Re (�1).

The MLCL developed here provides an approach for accurately calculating the hydraulic properties and
local vertically integrated flow fields for rough and tortuous fractures; it may thus be suitable for integration
with and improvement of fracture network models. The MLCL would also provide more accurate flow fields
for solute and heat transport problems. Since we used relatively smooth fractures with only one artificially
roughened fracture in this study, testing the performance of the MLCL by using rougher fractures should be
a goal for future work.
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