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Abstract Non-Fickian transport ubiquitously occurs across all scales within fractured geological media.

Detailed characterization of non-Fickian transport through single fractures is thus critical for predicting the

fate of solutes and other fluid-borne entities through fractured media. Our direct numerical simulations of

solute transport through two-dimensional rough-walled fractures showed early arrival and heavy tailing in

breakthrough curves (BTCs), which are salient characteristics of non-Fickian transport. Analyses for

dispersion coefficients (DADE) using the standard advection-dispersion equation (ADE) led to errors which

increased linearly with fracture heterogeneity. Estimated Taylor dispersion coefficients deviated from

estimated DADE even at higher Peclet numbers. Alternatively, we used continuous time random walk

(CTRW) model with truncated power law transition rate probability to characterize the non-Fickian

transport. CTRW modeling markedly and consistently improved fits to the BTCs relative to those fitted with

ADE solutions. The degree of deviation of transport from Fickian to non-Fickian is captured by the

parameter b of the truncated power law. We found that b is proportional to fracture heterogeneity. We

also found that the CTRW transport velocity can be predicted based on the flow velocity. Along with the

ability to predict b, this is a major step toward prediction of transport through CTRW using measurable

physical properties.

1. Introduction

Fractures occur ubiquitously in geological formations due to tectonic processes. Prediction of conservative

and reactive contaminant transport through fractured reservoirs is important for both environmental and

engineering problems and natural geophysical phenomena [Berkowitz, 2002]. To date, detailed characteri-

zation of complex fracture networks remains an open problem [Neuman, 2005]. Thus, numerous efforts

have been focused on the backbone of network models: discrete rough-walled fractures [e.g., Cardenas
et al., 2007, 2009; Keller et al., 1995, 1999]. Nonetheless, large-scale models typically use so-called discrete

fracture networks (DFNs) [Berkowitz and Scher, 1997; Cvetkovic et al., 2004] which tend to conceptualize the

discrete fractures as parallel plates [Maloszewski and Zuber, 1990; Sudicky and Frind, 1982], which in turn is

the simplest model for single fractures. Therefore, a solid basis for solute transport theory for single frac-

tures is critical even for continuum models.

Solute transport is usually assumed to follow Fickian behavior where the dispersion coefficient is spatially

and temporally constant. This is based on the assumption that geological formations of interest are statisti-

cally homogeneous and stationary, where the traditional advection-dispersion equation (ADE) holds true.

Roux et al. [1998] explained that variation in the velocity field due to geometric properties (i.e., roughness)

will lead to different dominant Fickian solute transport mechanisms through rough-walled 3-D fractures.

These mechanisms are molecular diffusion, Taylor dispersion [Aris, 1956; Taylor, 1953], and macrodispersion

[Gelhar and Axness, 1983; Keller et al., 1995, 1999], whose relative relevance is quantified through the

dimensionless Peclet number (Pe) defined by:

Pe 5
huihbi

Dm
(1)

where hui is the average or bulk velocity, b is the apparent aperture (the height difference between top

and bottom fracture surfaces) with arithmetic mean aperture hbi, and Dm is the molecular diffusion coeffi-

cient. Following Roux et al.’s [1998] work, Detwiler et al. [2000] proposed that the effective dispersion coeffi-

cient (D) of rough-walled fractures is the sum of the three mixing and spreading mechanisms:
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D 5 sDm 1 Dmacro 1 DTaylor (2)

where s is tortuosity, Dmacro is the macrodispersion coefficient, and DTaylor is the Taylor dispersion coeffi-

cient. The dominance of each term in equation (2) increases in the order they are presented from left to

right with increasing Pe: molecular diffusion dominates at the lowest Pe (1023 to 1021), followed by macro-

dispersion at intermediate Pe (1021 to 103), and then Taylor dispersion dominates at higher Pe (>103)

[Detwiler et al., 2000].

However, the extensive application and validation of Fickian transport theory remains a challenge since

heterogeneity of geological formations occurs at all scales [Berkowitz et al., 2006]. Moreover, dispersive

processes have been observed to increase with travel distance [Gelhar et al., 1992]. In fact, both laboratory

and field experiments have shown fast breakthrough, multimodal behavior, and long tails in breakthrough

curves of solutes transported through porous [Silliman and Simpson, 1987] and fractured media [Becker and

Shapiro, 2000]. Transport behavior such as scale-dependent spreading, early arrivals, and long tails are

often described as non-Fickian or anomalous transport. Fitting non-Fickian breakthrough curves (BTCs)

observed in single fractures with solutions to the standard ADE shows persistent errors [Bauget and Fourar,

2008; Jim�enez-Hornero et al., 2005]. Thus, there is a continuing need for further fundamental understanding

and analysis of non-Fickian transport in order to better predict the fate of solutes through rough-walled

fractures.

Non-Fickian transport has been broadly documented in rough-walled fractures. Enhancement of mixing

and spreading of solutes purely due to variability in advective transport through fractures would lead to

non-Fickian transport [Becker and Shapiro, 2000]. Additionally, non-Fickian transport could possibly be

interpreted in terms of diffusion into and out from immobile zones [Chen et al., 2010], fracture skins [Robin-

son et al., 1998], and the rock matrix [Zhou et al., 2006], channeling [Tsang, 1984; Tsang and Tsang, 1989], as

well as formation of eddies within the fracture [Cardenas et al., 2007]. Another explanation is that the time

and length scales over which transport occurs have not reached its asymptotic threshold [Wang et al.,

2012].

Non-Fickian transport can be mathematically characterized through different transport models including:

ADE with dynamic dispersion coefficient [Wang et al., 2012], mobile-immobile domains [Qian et al., 2011],

equivalent-stratified medium [Bauget and Fourar, 2008; Nowamooz et al., 2013], continuous time random

walk (CTRW) [Berkowitz et al., 2006], fractional advection-dispersion [Zhou et al., 2006], and multirate mass

transfer [Haggerty, 2013; Wang et al., 2005]. The descriptions of these models were recently summarized by

Neuman and Tartakovsky [2009]. However, CTRW has been shown to better reproduce BTCs than the

equivalent-stratified medium approach [Nowamooz et al., 2013]. Additionally, Berkowitz et al. [2006] sug-

gested that mobile-immobile domain models, fractional ADE, and multirate mass transfer models represent

special classes of CTRW. Therefore, for now, we focus our study on the CTRW framework.

The CTRW framework is capable of capturing Fickian and non-Fickian transport induced by unresolved het-

erogeneities. It resembles the ADE after inverse Laplace transformation of the generalized master equation

by having both advective and dispersive terms, but additionally the contribution of local scale processes

on non-Fickian transport is encapsulated by a memory function [Berkowitz et al., 2006; Cortis et al., 2004;

Margolin and Berkowitz, 2004]. Like the ADE, the CTRW assumes stationary statistical properties in spite of

its application to heterogeneous media [Berkowitz et al., 2006]. The successful applications of CTRW for

characterizing BTCs showing non-Fickian transport are extensive. Examples include transport through het-

erogeneous porous media [Cortis et al., 2004; Dentz et al., 2004], ‘‘homogeneous’’ sand and soil columns

[Cortis and Berkowitz, 2004], single fractures [Bauget and Fourar, 2008; Jim�enez-Hornero et al., 2005], and

fracture networks [Berkowitz and Scher, 1997, 1998].

The degree of deviation of transport to non-Fickian from Fickian can be captured by the value of b, a

parameter in the truncated power law (TPL) model within the context of the CTRW framework. Three

regimes of transport are classified based on b [Nowamooz et al., 2013]: (1) most anomalous transport where

both transport velocity and dispersion coefficient scale as power laws with time when 0< b< 1; (2) moder-

ate anomalous transport where transport velocity is constant but where dispersion coefficient still scales

following a power law when 1< b< 2; (3) Fickian transport where both transport velocity and dispersion

coefficient are constant when b> 2 and when the TPL-CTRW model is reduced to the ADE.
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Several studies have applied the CTRW for interpretation of non-Fickian transport through single fractures

[Bauget and Fourar, 2008; Jim�enez-Hornero et al., 2005; Nowamooz et al., 2013]. One recent study has quali-

tatively related b to the heterogeneity of fractures [Bauget and Fourar, 2008]. However, the quantitative

connection between these properties remains unclear, thus limiting the broad application of the CTRW for

prediction of transport. In the case of 2-D fractures, heterogeneity is represented by rb/hbi, where rb is

standard deviation of apparent aperture field. In this study, we attempt to quantify the inherent relation-

ship between heterogeneity and b which in turn provides a robust upscaling approach. Since both hetero-

geneity and anisotropy of fractures influence the dispersive processes [Zheng et al., 2009], and since this

study is focused on the non-Fickian behavior induced by heterogeneity, we limit our study to two-

dimensional (2-D) vertical plane high-resolution fractures instead of three-dimensional (3-D) fractures to cir-

cumvent anisotropy effects and due to computational limitations. Furthermore, for 3-D cases, the fluid

would flow through the most conductive paths (i.e., high aperture regions) and around the low aperture

regions. Additionally, the resultant out-of-vertical-plane velocity variations might lead to macrodispersion.

However, fluid flow through 2-D models where the fluid is forced to flow through both high and low aper-

ture regions is fundamentally different from the 3-D case. Thus, for our 2-D studies, out-of-plane velocity

variation is neglected and in-plane velocity variation across the aperture is the dominant factor that drives

solute dispersion. Moreover, molecular diffusion is negligible compared to Taylor dispersion in the 2-D

models; this allows for one-to-one comparison to 2-D transport models which are ideal for a first-order test

of the Taylor dispersion theory. This study enables us to accurately characterize non-Fickian transport

caused by fracture heterogeneity through 2-D rough-walled systems. The major contributions here relative

to previous work are as follows: (1) testing the validity of and quantifying the associated errors of the Taylor

dispersion theory for characterizing transport through 2-D rough-walled fractures; (2) quantifying the rela-

tionship between b and 2-D fracture heterogeneities; and (3) quantifying the relationship between solute

transport velocity from the CTRW and mean flow velocity from the ADE.

2. Methodology

2.1. High-Resolution Fracture Characterization and Fracture Properties
Here we use the same fracture in Cardenas et al. [2007, 2009] where they studied an undisturbed and intact

welded Santana tuff sample originating from the Trans-Pecos region of Texas, USA, with an arithmetic

mean aperture of 0.63 mm. A total area of 142 cm2 was scanned at the high-resolution X-ray computed

tomography (HRXCT) facility at The University of Texas at Austin. HRXCT measures X-ray attenuation of a

fracture sample through a continuous 360� cycle for each vertical increment to get a high-resolution 3-D

grid composed of voxels. The approach is described in detail by Ketcham and Carlson [2001]. In the previ-

ous study [Cardenas et al., 2007], vertical increment was set at 0.25 mm, while the horizontal field was

divided into 512 3 512 voxels with in-plane edge length of 0.23 mm. Fracture aperture and the locations

of the top and bottom surfaces were measured to better than 50 mm resolution using methods outlined by

Ketcham et al. [2010]. As a result, the top and bottom surfaces of the fracture sample consisted of 401 3

603 spatial data points that are used to construct a 3-D digital fracture (Figure 1a). To our knowledge,

HRXCT is regarded as the only approach available for determining detailed fracture morphology while the

fracture is well preserved and with mated fracture walls [Ketcham et al., 2010]. Unlike in Cardenas et al.
[2007], where they focused on one fracture cross section from the 3-D fracture map, here we used all 2-D

cross sections/fractures (�400) of �15 cm length (Figures 1a and 1b) and analyzed them as independent

2-D fractures. Each 2-D fracture is parallel to the red box A–B in Figure 1a with width equal to the horizon-

tal resolution �0.23 mm. The 2-D fractures were input into computational fluid dynamics flow and solute

transport direct numerical simulations. The method follows and extends the previous study that showed

non-Fickian solute transport through one of the 2-D fractures [Cardenas et al., 2007].

Previous analysis of the high-resolution data via the roughness-length method showed that the real frac-

ture surfaces are self-affine [Al-Johar, 2010], with Hurst exponent estimated to be 0.832 for the top surface

and 0.842 for the bottom surface. This Hurst exponent agrees with the common value of 0.8 for natural,

self-affine rough surfaces [Boffa et al., 1999]. The probability density of the aperture field obeys a log-

normal distribution with skewness toward large apertures (Figure 2). The arithmetic mean of apparent

aperture hbi of individual 2-D fractures ranges from 0.27 to 0.89 mm, the standard deviation rb ranges

from 0.112 to 1.091 mm, and correlation length kb ranges from 1.1 to 105.9 mm (Table 1). The correlation
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length is calculated by fitting an

exponential model with nugget effect

to the experimental semivariogram of

the aperture field. The typical expo-

nential semivariogram c(h) model is:

c hð Þ5 A 12exp
h

kb

� �� �
1 c0 (3)

where c0 is the nugget, A is the sill, h
is the lag distance.

2.2. Computational Fluid Dynamics
(CFD) Simulation
The CFD model solves the Navier-

Stokes and continuity equations

which describe single-phase steady

flow of an incompressible, isothermal,

and homogeneous fluid expressed by:

q u � ruð Þ5 2rp 1 lr2u (4)

r � u 5 0 (5)

where u 5 [u, w] is the velocity vector and p is the total pressure. For the individual 2-D fracture numerical

simulations, we assigned fracture surfaces as no-slip boundaries, and applied a given pressure drop

Dp 5 10 Pa over the fracture length l (515 cm) leading to a hydraulic gradient of 0.0068, driving fluid flow

from left to right (Figure 1b). Standard fluid properties for water were prescribed: q 5 1000 kg/m3 and

m5 1 3 1023 Pa s. The CFD model was implemented in COMSOL Multiphysics, a generic finite-element

model. The fracture domain was discretized into �90,000 triangular elements. In order to capture the no-

slip boundaries accurately, we imposed a finer mesh size (�0.002 mm) near the boundaries and a relatively

coarser mesh size (�0.006 mm) at the middle of the domain (Figure 1c). The flow field solved here serves

as the basis or input for the direct solute transport simulations.

2.3. Direct Solute Transport Simulation
The advection-diffusion equation describing solute transport through the 2-D fractures is:

@C

@t
5 2r uCð Þ1 Dmr2C (6)

where C is solute concentration, t is

time, and Dm is the molecular diffu-

sion coefficient. The solute transport

model was also solved with COMSOL

Multiphysics. We assumed a typical

conservative solute, e.g., Cl2 in water,

and set Dm at 2.03 3 1029 m2/s [Li
and Gregory, 1974]. Initial concentra-

tion in the fracture domain was:

C 5 0 0 < x < l t 5 0 (7)

while the boundary conditions were

specified as:

a)

c)

b)
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Figure 1. (a) Three-dimensional fracture sample mapped by high-resolution X-ray

computed tomography. (b) An example two-dimensional cross section indicated by

the red box A–B in Figure 1a used for 2-D simulations; filled color represents magni-

tude of velocity (U). (c) A magnified section of a portion of Figure 1b to highlight

the finite-element mesh.
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Figure 2. Frequency distribution of logarithm of apparent aperture (b) field for the

3-D fracture showing log-normal distribution with skewness toward large values.
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C 5 C0 5 1 x 5 0 t � 0 (8)

@C=@n 5 0 x 5 l 0 � t � 1 (9)

where n represents the normal direction to the outlet boundary. The inlet was a Dirichlet boundary assum-

ing step injection with C0 5 1, whereas the outlet was an open boundary.

Solving equations (6–9) yields the resident concentration time series, from which we can estimate the efflu-

ent solute mass by integrating the product of fluid velocity and concentration over the outlet boundary.

The 2-D flux-weighted BTCs (Cf) can thus be calculated through a ratio of effluent solute mass to fluid

mass, which is:

Cf 5

Ð b
0uCdzÐ b
0udz

(10)

We then normalized flux-weighted BTCs and time following:

C
0
5

Cf

C0
(11)

t
0
5

Qt

A
(12)

where C’ is the normalized concentration, t’ is the so-called pore volume, Q is the flow rate per length, and

A is the area of the fracture. The numerical transport model domain typically had the same �90,000 ele-

ments as the CFD models. Sensitivity analysis to mesh size and time step showed trivial numerical disper-

sion and that the solutions are mesh-independent.

2.4. Taylor Dispersion Theory
Taylor dispersion is often referred to as shear flow dispersion because it is caused by a stratified velocity

field [Taylor, 1953]. Taylor dispersion is appropriate for describing solute transport only after some asymp-

totic time/length scale, at which the longitudinal advective flux is balanced out by in-plane transverse dif-

fusive flux [Wang et al., 2012]. The classic Taylor dispersion theory also assumes that there is no additional

out-of-plane mixing, i.e., the channel is well mixed in the out-of-plane direction. For transport through par-

allel plates where the fluid follows Poiseuille (stratified) flow, the Taylor dispersion coefficient (DTaylor) is:

DTaylor 5
huihbið Þ2

210Dm
5

Q2

210Dm
(13)

where Q is simply the product of hui and hbi (Tables 1 and 2). Therefore, we can estimate DTaylor based on

Q and Dm without conducting direct solute transport simulations.

Table 2. Range of Fitted Parameters and Their Relevant Errors for the ADE and TPL Model Fits to the 2-D Flux-Weighted Breakthrough Curves

ADE TPL

UADE 3 1023 (m/s) DADE 3 1026 (m2/s) EADE t1 (s) t2 (s) b UTPL 3 1023 (m/s) DTPL 3 1026 (m2/s) ETPL

2.14 3 1023 to 1 2.75 3 1023 to 2.72 0.03–0.74 1029.79 to 101.01 100.97 to 105.45 0.94–2.86 6.60 3 1023 to 35.19 1.42 3 1023 to 7.73 0.01–0.36

Table 1. Statistics of 2-D Studied Fractures

Parameter Symbol Value

Arithmetic mean hbi 0.27–0.89 mm

Standard deviation rb 0.112–1.091 mm

Correlation length kb 1.1–105.9 mm

Reynolds number Re 0.001–0.690

Peclet number Pe 0.79–474.68
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2.5. Continuous Time Random Walk
The general formulation of the CTRW is the Fokker-Planck with memory equation (FPME) [Berkowitz et al.,
2006; Cortis and Berkowitz, 2005; Cortis et al., 2004; Jim�enez-Hornero et al., 2005]. The FPME describing con-

centration dynamics in a Laplace-transformed one-dimensional (1-D) space is given by:

p~C x; pð Þ2C0 xð Þ5 2 ~MðpÞ UTPL
@

@x
~Cðx; pÞ2DTPL

@2

@x2
~Cðx; pÞ

� �
(14)

where the tilde represents a variable or function in the Laplace space, the memory function ~MðpÞ5�tp
~wðpÞ

12~wðpÞ represents how the CTRW captures or represents non-Fickian transport induced by local heterogene-

ity or processes, p is the Laplace variable, ~wðpÞ is the transition rate probability, UTPL and DTPL are transport

velocity and dispersion coefficient in the context of the CTRW, respectively, which differ from the defini-

tions of mean flow velocity (UADE) and dispersion coefficient (DADE) in the context of the ADE [Berkowitz
et al., 2006]. For the classical ADE derived from mass conservation at continuum scale, UADE is the temporal

rate of change of the first moment of solute concentration, and DADE is the second central moment of the

concentration distribution. We assume that UADE and DADE are constant over time and space, i.e., the

asymptotic regime, and thus neglecting any variability of the UADE and DADE caused by local fracture heter-

ogeneity. However, the UTPL and DTPL in the TPL-CTRW model are not the same as UADE and DADE in the

ADE. The CTRW is originally derived from mass conservation at the molecular scale through integrating par-

ticle transitions over a certain time period [Berkowitz et al., 2006]. The specified time period distinguishes

the resolved from unresolved scales. The particle movements at unresolved scales are simulated by a prob-

abilistic approach that employs temporal probability density functions (PDFs). The PDF is dependent on

the local velocity and molecular diffusion, but variations in the form of the PDFs are largely attributed to

the spectrum of possible local velocity fields. Since particle transitions are highly related to the temporal

PDF, the UTPL and DTPL are thus correlated to the local velocity variations imposed by local heterogeneities;

that is UTPL and DTPL vary over time and space.

The heart of the CTRW model resides in the choice of PDF or transition rate probability ~wðpÞ to calculate

the memory equation. Cortis et al. [2004] proposed three possible formulae for ~wðpÞ to capture non-Fickian

transport, including: the asymptotic model, the truncated power law model, and the modified exponential

model. Since the TPL is capable of capturing features characterized by the asymptotic model by specifying

a large number for the ‘‘cutoff time,’’ and since the modified exponential model is designed for diffusion in

a random molecular system, we only employed the TPL model.

The formulation of ~wðpÞ following the TPL model is described by:

~wðpÞ5 1 1 s2pt1ð Þbexp t1pð Þ
C 2b; s21

2 1 t1p
� �
C 2b; s21

2ð Þ (15)

where t1 is the time for the onset of the power law, t2 is cutoff time corresponding to when large-scale Fick-

ian behavior begins or dominates, s2 5 t2/t1, and C() is the incomplete Gamma function.

2.6. Inverse Modeling Using Breakthrough Curves
Inverse estimation of parameters used in the ADE and the TPL was implemented through the 1-D

inverse modeling module of the CTRW Toolbox [Cortis and Berkowitz, 2005]. The initial and boundary

conditions are similar to the 2-D direct solute transport simulations described in section 2.3. How-

ever, inaccurate initial guesses for the parameters would result in convergence to a local minimum

error between the 1-D model and the 2-D flux-weighted BTCs resulting from the direct numerical

simulations. To avoid this, we iteratively adjusted the initial guesses of parameters until a global

minimum error is obtained. The resultant error (E) is used here as the metric for quantifying the

goodness-of-fit, which is defined by:

Ei 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

1

ðCi
1D2C2DÞ2

vuut (16)
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where N is the number of data

points in the BTCs, Ci
1D constitute

the 1-D BTCs fitted using the ADE

and TPL models, where i signifies

either the ADE or the TPL, and C2D

constitute the flux-weighted, spa-

tially integrated BTCs. Errors from

the ADE and TPL models are

denoted as EADE and ETPL,

respectively.

For the inverse modeling with the

ADE, the initial guesses for the fitted

parameters, including velocity UADE

and dispersion coefficient DADE,

were based on the Cubic Law and

the Taylor dispersion theory, respec-

tively. The non-Fickian transport

inverse modeling used the follow-

ing free parameters for the TPL

model: t1 and t2, b, UTPL, and DTPL. Initial estimates of UTPL and DTPL took on the values from the ADE inverse

modeling. Moreover, since the TPL is most sensitive to b while relatively insensitive to the time scale t1and

t2 [Cortis and Berkowitz, 2005], we chose a broad range for b, from 0.8 to 2, whereas initial guesses for t1

and t2 were almost constant.

3. Results

3.1. Non-Fickian Transport Behavior
The typical non-Fickian transport behavior of early arrivals and heavy tails were observed in most of the

BTCs from 2-D direct solute transport simulations (Figures 3b and 3c). The presence and growth of eddies

in rough-walled fractures could lead to non-Fickian transport behavior [Cardenas et al., 2007]. But here, we

find that non-Fickian transport is ubiquitous with or without the presence of eddies (Figure 3a) and prob-

ably due mainly to advection through a tortuous fracture [Becker and Shapiro, 2000]. All of the flux-

weighted BTCs converged to a unique dimensionless concentration C0 � 0.6 at dimensionless time t0 � 1.

All these show early breakthrough since in Fickian transport C0 � 0.5 at t0 � 1.

The time derivative of 2-D flux-

weighted BTCs for step injection

results in the residence time distri-

bution (RTD). Power law tails in the

RTDs, another typical characteristic

of non-Fickian transport, were

observed. Figure 4 displays some

different types of RTDs for various

fracture heterogeneities illustrating

that variations in fracture

geometry could lead to different

power law tails; this has also been

shown previously [Cardenas et al.,
2009].

3.2. Validity of the Taylor
Dispersion Theory to Estimate
Dispersion Coefficient DADE

The fitted UADE and DADE and the

corresponding errors for the ADE

a)

0.5 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1.0

t‘

C’ 0.5

C
’

0.5 1.0 1.5 2.0t’
 

c)

0.5 1.0 1.5 2.0
0

0.5

1.0

 

2D BTC
1D BTC

b)

t’

Figure 3. (a) Ensemble of flux-weighted breakthrough curves from 2-D direct sol-

ute transport simulations showing ubiquitous non-Fickian behavior. The inverse

estimation of the dispersion coefficient using the advection-dispersion equation

(ADE) model shows the degree to which the 1-D ADE model misses the arrival and

tails of the 2-D BTCs; this depends on the fracture heterogeneity as indicated in

inset plots, (b) rb/hbi5 0.80, and (c) rb/hbi5 0.69. b is the apparent aperture with

standard deviation rb and arithmetic mean hbi.

102

10-8

dC
’/d
t [

1/
s]

t [s]

 

 

i
ii
iii

10-6

10-4

10-2

103 104

Figure 4. Examples of different forms of residence time distributions showing

ubiquitous occurrence of non-Fickian transport behavior through 2-D rough-walled

fractures including: (i) a narrow shoulder after the peak, (ii) a heavy tail, and (iii)

deviation from Gaussian distribution after the peak.
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model are shown in Table 2. The

subtle difference in BTCs fitted by

the 1-D ADE model and from the

2-D direct solute transport simula-

tions is quantified through equa-

tion (16), and can be interpreted as

a metric for the appropriateness of

approximating a potentially non-

Fickian transport phenomenon

with a Fickian transport model

(Figure 5). The values of EADE for 2-

D fractures range from 0.03 to

0.74, with higher values corre-

sponding to increasing heteroge-

neity, i.e., rb/hbi, directly showing

that the ADE model with constant

DADE becomes less accurate for

rougher fractures.

The DADE values follow a quasi-

normal distribution with skewness

toward small values (Figure 6). To test the accuracy of Taylor dispersion theory in approximating DADE, we

compare the ratio of DADE to DTaylor with heterogeneity. The ratio is proportional to the heterogeneity (Fig-

ure 7) and ranges from 1 to 5 suggesting that assuming Taylor dispersion (suitable for parallel plates) while

neglecting the effect of heterogeneity on solute transport, will underestimate the mixing and spreading

processes, with underestimation becoming worse with increasing fracture heterogeneity. Additionally, Fig-

ure 7 gives the impression that when rb/hbi< 0.5 (and when Pe < 500 at Table 1), Taylor dispersion theory

is sufficient for predicting DADE. However, additional simulations with increasing Pe for the same fractures

showed that the Taylor dispersion theory initially underestimates DADE at lower Pe, then overestimates

DADE at higher Pe (Figure 8a). Therefore, the 2-D cases we investigated suggest that it may be inappropriate

to only use Taylor dispersion theory to predict DADE even at high Pe when it has been shown to perform

well for vertically integrated 3-D fractures [Detwiler et al., 2000].

Substitution of equation (1) into equation (13) yields:

DTaylor

Dm
5

Pe2

210
(17)

which shows that the DTaylor/Dm

has a power law relationship with

Pe with an exponent equal to 2

[Detwiler et al., 2000]. However, in

the case of our numerical simula-

tion results, the exponent is always

less than 2, and is inversely linearly

related to rb/hbi for the studied

fractures (Figures 8b and 9).

3.3. Performance of the TPL in
Characterizing Non-Fickian
Transport Behavior
The errors from fitting the TPL

model to 2-D direct transport sim-

ulation results are shown in Fig-

ures 10a, 10b, and Table 2. The

ratios of ETPL to EADE, which ranged
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Figure 5. Errors associated with fitting breakthrough curves using the advection-

dispersion equation (EADE). The error increases linearly with heterogeneity rb/hbi,
where b is apparent aperture with standard deviation of aperture rb and arithmetic

mean aperture hbi.
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from 0.04 to 0.95, were all less than

1 for the ensemble of 2-D fractures.

Thus, and not surprisingly, the TPL

performs substantially better than

the ADE for characterizing non-

Fickian transport. Furthermore, the

ratios decrease fairly linearly with

rb/hbi, showing that fracture heter-

ogeneity has a pronounced impact

on the non-Fickian transport

behavior.

We further plotted b against heter-

ogeneity to find any inherent rela-

tionship between them. As

expected, b decreased linearly from

�2 to �1 with increasing rb/hbi
(Figure 11). This illustrates that the

transition from non-Fickian to Fick-

ian transport depends on the

degree of heterogeneity. However,

the cases where effective Peclet number (Peeff 5 huihbi/DADE)> 1 were excluded from this analysis. This is

because advection-dominated transport tends to follow Fickian behavior [Detwiler et al., 2000], where the b
is expected to be �2; in fact, majority of these cases complied with this assumption (Figure 11). Conse-

quently, these cases are irrelevant for the purpose of quantifying non-Fickian transport in terms of b since

they are a fraction of all cases.

4. Discussion

4.1. Inappropriate Estimation of DADE Based on the Taylor Dispersion Theory
Molecular diffusion, Taylor dispersion, and macrodispersion constitute the complete Fickian dispersion

mechanism through fractures [Detwiler et al., 2000]. DTaylor is always smaller than DADE, with the difference

dependent on the fracture heterogeneity when Pe< 500 for the studied cases (Figure 7). This further and

clearly illustrates that heterogeneity

plays a significant role in facilitating

the mixing and spreading proc-

esses by forcing fluid flow through

low-aperture regions of 2-D rough-

walled fractures. The Taylor disper-

sion theory is therefore inappropri-

ate for estimating solute mixing

and spreading in rough-walled frac-

tures at relatively low Pe regime.

Numerous efforts have shown that

Taylor dispersion theory is

expected to be valid where Pe is

relatively high so as 3-D macrodis-

persion can be neglected [e.g.,

Roux et al., 1998; Detwiler et al.,
2000]. However, our numerical

experimental results show other-

wise for 2-D fractures. As Pe
increases, DTaylor may either under-

estimate (Pe<�1000) or
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Figure 7. The deviation of DTaylor from DADE is linearly dependent on heterogeneity

rb/hbi for cases where Peclet number <500. b is the apparent aperture with stand-

ard deviation rb and arithmetic mean hbi.
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overestimate (Pe>�1000) DADE (Fig-

ure 8). Moreover, our results do not

obey the previous power law scaling

with an exponent of 2 previously pro-

posed for DTaylor’s dependence on Pe
for vertically integrated 3-D fractures

[Detwiler et al., 2000]. For our 2-D verti-

cal plane cases, the exponent deviates

from 2 with increasing heterogeneity

via an inverse linear relationship (Fig-

ure 9). The difference is likely and

partly due to the fact that the previous

study relied on flow fields generated

by the Reynolds lubrication equation

which does not consider the interact-

ing effects of heterogeneity and iner-

tia. That is, previous studies did not

fully capture the complexity inherent

in inertial flow and transport in rough

single fractures across a range of Pec-

let and Reynolds numbers. On the

other hand, our 2-D examples negate preferential flow and out-of-plane transverse diffusive/dispersive pro-

cess, which are present in the cases studied by Detwiler et al. [2000]. The absence of out-plane diffusive/dis-

persive flux makes it less likely that the longitudinal solute advective flux is balanced out, since only in-

plane transverse diffusive/dispersive process occurs in our 2-D cases; this balance of fluxes is a critical

assumption in the Taylor dispersion theory, and further explains why our 2-D results are different from that

for 3-D fractures.

4.2. Dependence of Non-Fickian Transport Magnitude on Heterogeneity
Rough surfaces acting as no-slip walls lead to classic ‘‘parabolic’’ flow profiles but in a complex way. This

may lead to non-Fickian solute transport (Figures 3 and 4). Our attempts to quantify non-Fickian transport

through a Fickian model with DADE reveal that the degree of non-Fickian behavior, i.e., the resultant fitting

errors, is linearly dependent on the fracture heterogeneity (Figure 5). Furthermore, the increasing discrep-

ancy between DADE and DTaylor when plotted against heterogeneity supports this (Figure 7). It has been

previously shown through direct numerical simulations that eddies (or stagnation zones) cause non-Fickian

transport [Cardenas et al., 2007]. While early breakthrough of the solute followed by power law tailing is

prevalent in our numerical experiments, only a portion of the fractures we considered likely host large

eddies, however.
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is correlation length.
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Non-Fickian behavior could also be

caused by a spreading process that

would not reach its asymptotic value

if the time and length scales over

which solute transport occurs are the

same order of the variation in veloc-

ity field [Koch and Brady, 1987]. To

this end, we calculated the potential

length scales (L) that separate Fickian

and non-Fickian transport. The calcu-

lation is based on the model for

equivalent parallel plates following

equation (31) in Wang et al. [2012].

We found that L ranges from 4.76 3

1023 m to 0.57 m with 29% of L
greater than the studied fracture

length (l � 0.15 m). Additionally, the

ratios of error ETPL/EADE decrease

with dimensionless length L/l (Figure

10b), demonstrating that as L/l
becomes >1 non-Fickian transport

tends to be more pronounced since

the fracture length falls short of its

asymptotic dispersion threshold. This has also been observed for solute transport through pores [Cardenas,

2009]. Since some of our numerical experiments cover preasymptotic space (or time) a time-dependent dis-

persion coefficient would be appropriate for the ADE [Dentz and Carrera, 2007; Wang et al., 2012]. Nonethe-

less, it is clear that that the cases we considered are better represented by non-Fickian transport models.

Modeling non-Fickian transport through the TPL-CTRW model which allows for the unresolved local heter-

ogeneity notably improved the BTC fits (Figure 10a). The TPL model embedded in the CTRW is capable of

capturing the early arrival and power law tailing phenomenon while the ADE falls short. This is due to the

fact that the TPL-CTRW has more flexible fitting parameters than the ADE does, which makes the TPL-

CTRW mathematically easier to optimize to the 2-D flux-weighted BTCs. Physically, this is because the ADE

inherently treats heterogeneous fractures as homogeneous media where flow velocity and dispersion coef-

ficient are constant in space and time. On the other hand, the CTRW model uses a transition probability

function allowing for local heterogeneity; this more accurately models the actual solute transport dynam-

ics. In fact, the TPL-CTRW model performs better than the standard ADE even when the fracture length

scale is above the calculated asymptotic scale, i.e., L/l< 1 (Figure 10b). This highlights the importance and

contribution of fracture heterogeneity toward non-Fickian transport at the asymptotic dispersion regime.

The correlation length of the aperture field contributes little to non-Fickian behavior in our studied 2-D

fractures (Figure 10c). The ratios of error ETPL/EADE are independent of correlation length. This shows that

the transport process through 3-D fractures are different to 2-D fractures, where non-Fickian behavior is

nonetheless still prevalent. This might be caused by the fact that the correlation length is not much shorter

than the computational domain length. Consequently, the highly conductive zones in 3-D fractures are

more likely to be connected, and provides preferential/channelized flow paths which promote non-Fickian

behavior. However, fluid flow through 2-D fractures does not have these preferential flow paths, which are

best described by the correlation length, and thus the effect of correlation length on solute transport is

not as critical as it is for 3-D fractures.

Another metric for the degree of non-Fickian transport is b, which we show is proportional to the fracture

heterogeneity (Figure 11). The effective dispersion coefficient Peeff to some extent determines the propen-

sity for non-Fickian transport [Detwiler et al., 2000]; however, we neglect its effects since Peeff is generally

small (Peeff< 2.5) in our simulations. This assumption is probably responsible for fluctuations of b around

the regression line (Figure 11). That is, some of the variation is inherently due to the relative importance of

advective and dispersive transport processes. Most values of b range from 1 to 2 representing the
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flow velocity, DADE is fitted dispersion coefficient through 1-D ADE model. Blue

line represents the linear regression of b with heterogeneity based only on the
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moderate non-Fickian transport

regime where CTRW transport veloc-

ity is constant over time while the

dispersion coefficient scales follow-

ing a power law [Dentz et al., 2004].

The connection between b and het-

erogeneity which we established

allows for upscaling the effects of

local spreading and mixing processes

within the CTRW framework, at least

for 2-D fractures. That is, b, which is

an effective property, can be pre-

dicted from mapped b fields.

4.3. Dependence of the Ratio of
Mean Flow Velocity to CTRW
Transport Velocity on b

Even though the inverse modeling

with the TPL-CTRW model is rela-

tively insensitive to the parameters

UTPL, DTPL, t1, and t2 compared to b,

the identification of UTPL, DTPL is also

crucial for understanding and there-

fore predicting non-Fickian transport.

This is particularly true for UTPL [Now-
amooz et al., 2013]. To this end, we

compared UTPL and DTPL to UADE and

DADE (Table 2). In addition to the

inverse modeling results of this

study, we further considered associ-

ated results from previous studies

which used the TPL model to charac-

terize non-Fickian transport through

3-D rough-walled fractures [Jim�enez-
Hornero et al., 2005; Nowamooz et al.,
2013]. Figure 12a demonstrates that

the velocity ratio, i.e., UADE/UTPL, is

linearly proportional to b with a slope close to 1. Moreover, since b is linearly dependent on the heteroge-

neity when Peeff< 1(Figure 11), we can thus infer that the velocity ratio is proportional to heterogeneity as

well. The deviation of transport velocity from mean flow velocity in fractures could be due to local velocity

variability resulting from fracture heterogeneity. For example, a preferential flow path would case the trans-

port velocity to be greater than mean fluid velocity, and this will be responsible for fast solute arrival. On

the other hand, eddy growth in 2-D fractures would retard transport velocity and lead to heavy tails [Carde-
nas et al., 2007]. However, the ratio DADE/DTPL did not show a systematic relationship with b (Figure 12b).

This is partly due to the fact that by taking into account a transition rate function, the DTPL scales with time

following a power law at moderate non-Fickian transport regimes (1< b< 2) [Berkowitz et al., 2006], while

the DADE does not consider local transport effects and is temporally constant. The results here show that

one could conceivably predict transport velocity for the TPL-CTRW model based on mean flow velocity and

heterogeneity.

5. Summary and Conclusion

We conducted direct numerical simulations of solute transport using 2-D maps extracted from a real frac-

ture. Breakthrough curves from the simulations show non-Fickian behavior with early arrival followed by
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power law tailing. The results show that the Taylor dispersion theory may be insufficient for reproducing

the breakthrough curves even at high Peclet numbers. The degree of non-Fickian transport was shown to

depend on fracture heterogeneity. Accurate analysis of non-Fickian transport was implemented using

inversely estimated parameters through the continuous time random walk model with a truncated power

law transition probability for consideration of the unresolved local heterogeneity. For the moderate non-

Fickian transport, where 1< b < 2 for the truncated power law, b was found to be linearly proportional to

fracture heterogeneity. In addition, the ratio of mean flow velocity (within the context of the standard

advection-dispersion equation) to CTRW transport velocity (within the context of continuous time random

walk) is proportional to b. However, no relationship was observed that would allow for prediction of the

dispersion coefficient within the context of continuous time random walk. Our study now allows for predic-

tion of transport with the continuous time random walk model based on measurable physical properties.

However, this potentially predictive capability needs to be extended and tested first using more fractures,

and with the consideration for three-dimensional cases which naturally allows for anisotropy.
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