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The quantitative study of transport through fracturedmedia has continued for many decades, but
has often been constrained by observational and computational challenges. Here, we developed
an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute
transport through natural fractures based on a 2D flow field generated from the modified
local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs)
through direct simulations with the 3D advection–diffusion equation (ADE) and Navier–Stokes
equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs
calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and
long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic
dispersion process throughmoment analysis. From this, asymptotic time scales were determined
for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the
advantage and benefit of using an efficient combination of flow modeling and RWPT.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Fractures may act as conduits for fluid flow and solute
transport in fractured materials. Fracture roughness and tortu-
osity are the primary factors that control fluid flow and transport
processes through fractures (Brown et al., 1995; Brush and
Thomson, 2003; Tsang, 1984; Zheng et al., 2009; Zimmerman
and Bodvarsson, 1996; Zimmerman et al., 1991). Thus, funda-
mental understanding and prediction of physical and chemical
processes within single fractures are needed in order to analyze
hydrological phenomena at various scales (Berkowitz, 2002).
Despite its importance, the mathematical description of fluid
flow and solute transport in single rough-walled fractures is
typically simplified in most studies due to observational and
computational limitations.
Fluid flow through rough-walled fractures is governed by
the Navier–Stokes equations (NSE) and continuity equation,
which are based on fluid momentum andmass conservation,
respectively. For single-phase, incompressible, and steady fluid
flow, the equations read as:

ρ u � ∇ð Þu ¼ −∇pþ μ∇2u ð1� 1Þ

∇ � u ¼ 0 ð1� 2Þ

where ρ is fluid density, u=[u, v, w] is velocity vector, p is total
pressure, and μ is fluid dynamic viscosity. The resultant flow
field from solving the NSE can thus be used to simulate solute
transport dynamics.

Conservative solute transport through a fracture is described
by the Eulerian advection–diffusion equation (ADE):

∂C=∂t þ u∇C ¼ Dm∇
2C ð2Þ
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where C refers to solute concentration and Dm is the molecular
diffusion coefficient. Although the ADE is the most accurate and
complete formulation, solving it directly through rough-walled
three-dimensional (3D) fractures remains challenging. This is
because solving the ADE not only requires significant compu-
tational resources, but also suffers from numerical dispersion
in the high-Peclet-number (Pe) regime (e.g., Patankar, 1980;
Szymczak and Ladd, 2003). Reducing numerical dispersion
requires refined discretization of the domain of interest, which
increases the computational burden.

Recent studies solved the ADE using flow fields calculated
from the NSE for two-dimensional (2D) natural fractures
(Cardenas et al., 2007, 2009; Wang and Cardenas, 2014).
Using numerical models, the effect of roughness and inertial
force on the solute transport was examined. However, only
a few studies successfully implemented the NSE directly to
digitized 3D fractures (Al-Yaarubi et al., 2005; Brush and
Thomson, 2003; Wang et al., 2015), but none of those 3D
cases considered the effect of the NSE-based flow field
on solute transport; i.e., through solving the ADE directly.
Further computational investigations of how roughness and
inertial force affect solute transport within 3D fractures have
been limited due to computational expense. To circum-
vent the difficulty of solving the ADE and associated NSE to
simulate solute transport through 3D fractures, most
researchers have used the Lagrangian random walk particle
tracking algorithm (RWPT) with 2D flow fields generated
from the classical local cubic law (LCL) (e.g., Detwiler et al.,
2000; James et al., 2005; Reimus, 1995; Zheng et al., 2009).
This approach is popular because 2D simulations are more
computationally convenient and efficient.

The LCL, sometimes called Reynolds equation, is a linearized
or vertically-integrated version of the NSE widely used to
characterize the flow field in rough-walled fractures (Brown
et al., 1995; Zimmerman et al., 1991):

∇ � b x; yð Þ3∇p
� �

¼ 0 ð3Þ

where b is the local vertical aperture, which is the void space
between the top and bottom fracture surfaces. The underlying
assumptions that allow the classical LCL to be used in lieu of the
NSE are: (1) inertial force is sufficiently low (Reynolds number
(Re) ranging 10−5–10−1) such that the transmissivity of
fractures is independent of Reynolds number (Al-Yaarubi
et al., 2005; Zimmerman et al., 2004), and (2) the fracture
mid-surface plane is smooth enough compared to the mean
aperture such that the undulation of themid-surface plane can
be neglected. However, natural fractures may have highly
heterogeneous aperture fields (Berkowitz, 2002) and the
fracturemid-surface planemaybe tortuous. In addition, inertial
force is not negligible even at moderate Re regimes where flow
tends to be non-Darcian (Qian et al., 2011). Consequently, the
classical LCL consistently overestimates flow rates (Al-Yaarubi
et al., 2005; Brush and Thomson, 2003; Konzuk and Kueper,
2004; Mourzenko et al., 1995; Nicholl et al., 1999), and thus
may misrepresent transport processes as well.

To compensate for the discrepancy in flow rates estimated
through the LCL so it can more accurately be applied for
solute transport modeling, Detwiler et al. (2002) proposed
and calculated a flow field correction coefficient based on
observations from physical flow experiments. However,
without prior and sample-specific knowledge derived from
experiments, the widespread application of the classical LCL
remains questionable, and thus further investigations of
transport process with flow fields derived from solving the
LCL might lead to erroneous results.

The goal of this study is to develop an approach for accurate
and efficient calculation of transport, and by necessity flow,
through single fractures to better understand the character and
nature of transport, particularly quantification of the dynamic
dispersion coefficient to describe non-Fickian transport and its
transition to Fickian transport, if these are present. To achieve
this goal, we first calculated BTCs from the ADE based on a flow
field resulting from numerically solving the NSE, the results of
which are considered the real or actual flow and transport
fields. Seeking an alternative to the computationally inten-
sive solution of the ADE, we then developed an efficient
quasi-3D RWPT that also produced BTCs, but this time based
on flow fields modeled through the LCL and a recently
developed modified local cubic law (MLCL) (Wang et al.,
2015) that allows and corrects for local tortuosity, rough-
ness, and low inertial force. The approach is quasi-3D in that
the mean (or vertically-integrated) flow field is calculated
along the fracture plane whereas vertical flow variations
across the fracture plane are indirectly considered. Using the
RWPT results, we analyzed the solute transport behavior,
which exhibited non-Fickian properties. The analysis quan-
tified the effective dispersion coefficient over time using
spatial moment analysis, direct theoretical calculation of the
related transition time scales from non-Fickian to Fickian
transport regimes, and inverse modeling of the BTC through
an effective 1D ADE.
2. Computational modeling methods

2.1. Direct simulation of flow and transport through natural
fractures

2.1.1. Flow field solution with the Navier–Stokes equations
Here, we used single natural fractures studied previously by

Cardenas et al (2007), and Wang et al. (2015) (referred to as
H1, H2, and H3 in that study). The fractures are natural welded
Santana tuff samples from the Trans-Pecos region of Texas,
USA, and they were mapped through high-resolution X-ray
computed tomography. Detailed fracture information was
described by Wang et al. (2015).

Numerical modelingwith the NSE and continuity equations
(i.e., computational fluid dynamics (CFD) simulation) was
implemented in COMSOL Multiphysics, a commercial finite-
element modeling software, where standard fluid properties
for water were prescribed: ρ = 1000 kg/m3 and μ = 1 ×
10−3 Pa s. To reduce numerical dispersion, finer elements were
imposed around the boundary and coarser elements within the
domain; Fig. 1 in Wang et al. (2015) illustrates a tetrahedral
finite-element mesh for one of the fractures (H3). The mean
fluid flow in the longitudinal direction is driven by a specified
pressure gradient. The fracture sides were set as no-slip
boundary conditions. The steady-state CFD model took 2–
3 days to converge with the model needing up to 60 Gb of
memory.
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2.1.2. Solute transport modeling with the advection–diffusion
equation

Solute transport through 3D fractures is described by the
ADE (Eq. (2)). In this study,Dm=2.03× 10−9m2/s for a typical
conservative solute (Li and Gregory, 1974). Initial concentra-
tion in the fracture domain was:

C ¼ 0 0bxbl;0bybw;−bbzbb; t ¼ 0 ð4� 1Þ

where l and w are fracture length and width, respectively. The
inlet was specified as a Dirichlet boundary, whereas the outlet
was an open boundary:

C ¼ C0 ¼ 1 x ¼ 0 t≥0 ð4� 2Þ

∂C=∂n ¼ 0 x ¼ l 0≤t≤∞ ð4� 3Þ

where n represents the normal direction to the outlet boundary.
The solute transport model was also solved with COMSOL
Multiphysics using the same mesh as the NSE with minimal
numerical dispersion. The simulation was run up to t=1week
when the solute filled the entire domain; the model used up
to 30 Gb of memory. Note that the effective Peclet number
Peff b 1 such that numerical dispersion was negligible. The Peff=
buN bbN / DADE, where buN is the mean flow velocity, bbN is the
arithmetic mean aperture, and DADE is the fitted dispersion
coefficient.

2.2. Quasi-3D random walk particle tracking: algorithm and
numerical implementation

2.2.1. Particle transport algorithm based on the modified LCL
In this study, the same standard method for RWPT was

implemented as used in numerous studies (e.g., Detwiler et al.,
2000; James and Chrysikopoulos, 2001; James et al., 2005;
Zheng et al., 2009) to study solute transport through natural
fractures. However, we used the flow field derived from solving
theMLCL (Wang et al., 2015) rather than by solving the LCL (as
done by most previous studies), thus the variation of the mid-
surface plane of aperture field (i.e. tortuosity), roughness and
low inertial effects were considered. The MLCL reads as:

∇ � Tx

C
∂p
∂x

cos ∅xð Þ i!þ Ty

C
∂p
∂y

cos ∅y

� �
j
!� �

¼ 0 ð5Þ

where Tx and Ty are transmissivities in the x and y directions
(both in the x–y horizontal plane), ϕx and ϕy are flow
orientation angles relative to horizontal (see Fig. 2 in Wang
et al. (2015) for graphical illustration), and C is a correction
factor for roughness and weak inertial effects (see Fig. 5 in
Wang et al. (2015) for an illustration of C). Eq. (5) is a non-
linear equation since C is also a function of p (or the pressure
gradient); thus it is solved numerically using an iterative solver
also implemented in COMSOL Multiphysics. Flow was driven by
a mean pressure gradient between an inlet and an outlet face.

After the mean (or vertically-integrated) velocities were
calculated based on the MLCL, particles were released at the
inlet following a flux-weighted probability density distribution.
Following the assumption that the flow field follows the
mid-surface of the aperture field, i.e., the aperture field is
symmetric about themid-surface, the velocity in the z direction
(i.e., vertical) is thus negligible. Therefore, particle advection
and diffusion in the x and y directions were specified as (James
et al., 2005; Zheng et al., 2009):

xnþ1 ¼ xn þ u xn; yn; zn
� �

Δt þ N 0; ; ;1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmΔt

p
6� 1

ynþ1 ¼ yn þ v xn; yn; zn
� �

Δt þ N 0; ; ;1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmΔt

p
6� 2

while only molecular diffusion occurs in the z-direction:

znþ1 ¼ zn þ N 0;1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmΔt

p
6� 3

where [xn, yn, zn] is particle location in the Cartesian space at
time nΔt, n refers to the current time step, and n + 1 is the
succeeding time step, N(0,1) is a random selection from the
standard normal distribution, and [u(xn,yn,zn), v(xn,yn,zn)] is the
local 3D velocity field in the x, y and z directions. To minimize
computational costs of using an explicitly modeled 3D velocity
field (i.e., through the solution of the NSE), we assumed a
parabolic velocity profile in the z direction which is similar to
previous studies (Detwiler et al., 2000, 2002; James and
Chrysikopoulos, 2000, 2001; James et al., 2005; Zheng et al.,
2009). That is, Poiseuille flow is assumed across the local
aperture. Thus, the quasi-3D velocities in the x and y directions
are:

u ¼ 3
2
U 1−4

z−zmid

b x; yð Þ
� �2	 


ð7� 1Þ

v ¼ 3
2
V 1−4

z−zmid

b x; yð Þ
� �2	 


ð7� 2Þ

where [U, V] are the 2D velocities in the x and y directions,
respectively, calculated from solving the MLCL (Wang et al.,
2015) and the classical LCL, zmid is the location ofmid-surface of
the aperture field in the z-direction. Hereafter, the velocity
used for implementing the RWPT was solved through the
MLCL, unless stated otherwise (e.g., when using a flow field
modeled with the classical LCL).

The exclusion of advection in the z direction requires
modification because a particle traveling across cells with
different apertures should adjust itself to the appropriate z
location. That is, a particle still moves up and down as it tracks
the upward and downward movement of the mean flow
(i.e., flow tortuosity). This formulation is implemented as:

znþ1 ¼ znþ1
mid þ bnþ1

bn
zn−znmid

� � ð8Þ

where zn+ 1 and zn are the z locations across different cells with
different apertures bn + 1 and bn, and associated mid-surfaces
zmid

n + 1 and zmid
n at current and future time steps, respectively.

2.2.2. Adaptive time stepping
Solution accuracy and computational efficiency largely

depend on the time step Δt. To improve solution accuracy,
time steps need to be sufficiently small such that a moving
particle experiences all of the fracture's local roughness,
i.e., it does not jump over parts of the domain leading to
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aliasing. On the contrary, increasing Δt speeds the computa-
tional execution of the transient transport problem. To strike a
balance between these competing objectives, an adaptive time
stepping approach that satisfies the condition that every
advective distance is less than half the cell size was adopted,
and diffusive distance is less than 1/20 of the local aperture.
This method simultaneously ensures solution accuracy and
computational efficiency (Detwiler et al., 2002; Reimus and
James, 2002).

2.2.3. Initial particle release and boundary conditions
The resulting solution of theRWPT is sensitive to theparticle

release location and scheme. Ideally, the spatial distribution and
number of particles introduced at the inlet should be propor-
tional to the local fluid flux (James et al., 2005; Reimus,
1995). However, fluid flux varies horizontally (y-direction)
and vertically (z-direction). To capture this variation, we
first determined the number of particles within piecewise y
locations across the inlet (x = 0). That is, the probability
distribution function (PDF) was constructed based on the
flow contribution of each cell (i.e., fracture resolution), where
the 2D flow rate was estimated from the MLCL (or LCL), and
particles were assigned based on the PDF. Therefore, the
prorated fraction of particles can be determined within
associated inlet cells according to the PDF. Afterward, a
random value following a uniform distribution between 0
and 1 was generated to specify the y location of each particle
within each cell. Lastly, z locationwas determined similarly, but
assuming that the local vertical velocity follows a parabolic
profile, which was used for location weighting. More details on
assignment of spatial distribution of individual particles can be
found in the works of Reimus (1995) and James et al. (2005).

Because we will be comparing results from the RWPT to
those from direct numerical simulation with the 3D ADE, we
specified the top and bottom fracture surfaces and both side
faces as no-flux boundaries. That is, we employed the reflection
principle every time a particle hits walls to satisfy a no-flux
condition without energy loss (Szymczak and Ladd, 2003).

2.2.4. Implementation of random walk particle tracking
The RWPT algorithm was implemented in MATLAB by

releasing N = 104 particles. Because each particle's movement
is independent of other particles, we were able to use the
Parallel Toolbox in MATLAB to keep track of 12 particles
simultaneously during each computation; this further im-
proved the computational efficiency. The RWPT was imple-
mented on a high-performance computerwith 16 shared CPUs,
and it took ~2 wall clock days to finish and used up to 5 Gb of
memory. Sensitivity analysis with varying number of particles
showed that the numerical results were no longer impacted by
the number of particles when N = 104.

2.3. Analysis of solute transport behavior

2.3.1. Breakthrough curves
The cumulative fraction of particles reaching the outlet

boundary over time represents the normalized concentration
for the RWPT (C′RWPT), which is:

C0
RWPT tð Þ ¼ Nc tð Þ

N
ð9Þ
where Nc(t) is the time series of accumulated number of
particle arrivals at the outlet. The C′RWPT represents the BTC
resulting from the RWPT. BTCs were generated with RWPT for
two 2D velocity fields: using both the LCL and MLCL.

The concentration resulting from solution of (2) and (4) can
be used to estimate the flux-weighted BTC from the ADE
(Wang and Cardenas, 2014):

CADE tð Þ ¼ ∬uC tð ÞdA
∬udA ð10Þ

where u is the longitudinal velocity, CADE is the solute con-
centration, and A is the outlet area. We then normalized the
flux-weighted concentration for theADE (C′ADE) and time (t′, or
pore volume) following:

C0
ADE tð Þ ¼ CADE tð Þ

C0
ð11� 1Þ

t0 ¼ Qt
V

ð11� 2Þ

where Q is the volumetric flux from solving the NSE, and V is
the fracture volume. The BTCs were used to analyze transport
behavior.

2.3.2. Spatial moment analysis for effective dispersion coefficient
Transport processes may be characterized by the first and

second spatial moments of the plume and/or particles. In this
study, longitudinal moment analysis was used to quantify the
effective dispersion coefficient (degree of spreading) by
analyzing the spatial pattern of the particles over time. The
first (m1) and second (m2) moments are:

m1 tð Þ ¼ 1
N

Z L

0
x tð Þdx ð12� 1Þ

m2 tð Þ ¼ 1
N

Z L

0
x tð Þ2dx ð12� 2Þ

where x(t) represents location of an individual particle in the x
direction.m1(t) is the longitudinal center of mass (or position)
of a plume, increasing with time. The longitudinal spatial
variance (σ 2) of the plume represents the spreading distance
around the center of mass of the plume, which is:

σ tð Þ2 ¼ m2 tð Þ−m1 tð Þ2: ð13Þ

From σ 2, the dynamic effective dispersion coefficient (D(t))
can be estimated as:

D tð Þ ¼ σ tð Þ2
2t

: ð14Þ

2.3.3. Analysis of asymptotic time scale
Non-Fickian transport is due to the mixing and spreading

process failing to reach an asymptote when the time or where
the length overwhich transport occurs is not large compared to
the scale of variation of the velocity field (Koch and Brady,
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1987). That is, under certain circumstances, e.g., when the
velocity field is statistically stationary,Dwithin the non-Fickian
regime increases asymptotically to the Fickian dispersion
regime after a sufficient time and/or length scale has been
exceeded. Therefore, the quantification of a dynamic D can also
be used to determine the asymptotic threshold time and length
scales that separate non-Fickian from Fickian transport (Wang
et al., 2012).

For solute transport through parallel plates with smooth
and uniform surfaces, the asymptotic time and length scales
can be theoretically calculated (Wang et al, 2012). For natural
fractures with roughness and tortuosity, we replace the
uniform aperture with the arithmetic mean aperture (bbN) to
estimate the theoretical asymptotic time scale as:

T ¼ bh i2= 4Dmð Þ: ð15Þ

Moreover, the estimated dynamic D based on accurate
particle trajectories from (14) can be used to quantify the actual
asymptotic time scale (Table 1), such that non-Fickian and
Fickian transport regimes can be separated.

3. Results and discussion

3.1. Solute transport dynamics

The solute transport dynamics are affected by preferential
high-velocity zones (Figs. 1 and 2). The RWPT with the MLCL
captured the effects of preferential transport along the high
velocity zones, with large-correlation-range effects resulting in
fast breakthrough. Correlated low-velocity zones retarded the
solute propagation process, and are the cause for the long tails
in the BTCs.

Overall, the solute propagation front fromRWPT at different
times generally resembles that from the 3D ADE for all studied
fractures (Fig. 1). This illustrates the robustness of our RWPT
approach using a quasi-3D velocity field to simulate solute
transport. However, the spatial distribution of particles adds
noise that is not observed in the solute concentration field from
the 3D ADE; this is because a minority of particles reside in
places where concentration is too low to accurately assess. In
general, the RWPT with the MLCL flow field is capable of
capturing the propagation front of the solute (Fig. 1).
Table 1
Parameters for fitting breakthrough curves (BTCs) through the advection–
dispersion equation (Inverse 1D Model). The BTCs were solved from direct
simulation (i.e., advection diffusion equation and Navier–Stokes equations).
u and Dasymptotic represent velocity and asymptotic dispersion coefficient,
respectively. Asymptotic values of D and time scales (L) were observed from
dynamic evolution of effective D (Fig. 3b). Additionally, the theoretical T were
estimated following Eq. (15).

Natural
fractures

Inverse 1D model RWPT (MLCL) Theoretical

u Dasymptotic Dasymptotic L [s] T [s]

H1 9.10 × 10−5 6.70 × 10−8 6.90 × 10−8 ~8600 1377.6
H2 6.95 × 10−5 2.28 × 10−7 1.83 × 10−7 ~697 275.6
H3 1.97 × 10−5 9.95 × 10−8 1.05 × 10−7 ~617 564.2
3.2. Breakthrough curves showing non-Fickian behavior

For reference, the BTCs derived from solving the 3D ADE are
considered the true BTCs. The BTCs from the RWPT based on
the MLCL are able to replicate the actual BTCs, but the LCL-
based BTCs fail to do so (Fig. 3a) and resulted in excessively
early breakthrough.

The BTCs predicted by theADE and RWPTwith theMLCL are
characteristic of early arrival and long tailing—the typical non-
Fickian features. The early arrival is clearly demonstrated by the
BTCs (Fig. 3a), with the elapsed time for C/C0 = 0.5 b 1 pore
volume. Moreover, it takes at least 2.5 pore volumes for the
solutes to completely fill up the entire domain, and for all the
particles to reach the outlet boundary. This feature signifies the
long tails of BTCs. Fundamentally, the non-Fickian transport
is caused by velocity variation resulting from the fracture
roughness (Wang and Cardenas, 2014).

However, the RWPT with the MLCL, while it generally
captures the actual BTCs better than the LCL, might still miss
some of the late tail as shown in one of the natural fractures
(H3) (Fig. 3a). The slight difference could be due to the
shortcomings of the quasi-3D velocity field in representing the
real 3D velocity field, which may have non-parabolic local
velocity profiles or even reversed fluid flow (e.g., large eddies).

3.3. Validity of the random walk particle tracking algorithm

Previous studies have shown that transport simulation
based on the modified flow field using the LCL through RWPT
leads to underestimation of longitudinal D by 12–19% com-
pared to experimental results (Detwiler et al., 2000; Nicholl
and Detwiler, 2001). The discrepancy could be due to intrinsic
limitations of extending the local vertical velocity variation
parabolically across the fracture aperture to mimic the
actual 3D velocity field, or due to assumptions in the LCL,
which disregards velocity variations that result from frac-
ture roughness (Brown et al., 1995; Brush and Thomson,
2003; Mourzenko et al., 1995) and tortuosity (Tsang, 1984).
In addition, the apparent shortcoming of the RWPT with the
LCL could be due to the aspects of the RWPT algorithm,
e.g., how boundary conditions are implemented or how and
where particles are released. Moreover, without correcting
for the flow field tomatch experimental results (Detwiler et al.,
2000), the RWPTwould clearly overestimate transport velocity
(Fig. 3a).

In spite of the failure of RWPT with LCL, our results show
that the RWPT with 2D velocity from the MLCL reproduces the
overall transport process well. We show that not only does the
RWPT capture the solute propagation front (Fig. 1), but that the
RWPT-MLCL reproduce the actual BTCs fairlywell (Fig. 3a). This
further implies that the MLCL adequately represented the local
vertically-integrated flow rate and can be useful for transport
prediction. Based on the accurate particle trajectories, we
illustrate how we can further estimate the dynamic D over
time.

3.4. Quantification of dynamic dispersion coefficient and
asymptotic time scale

The dynamic D based on (14) increases with time (Fig. 3b)
to its asymptotic value (i.e., Taylor dispersion coefficient; see



Fig. 1. Propagation of solute transport through natural fractures (H1, H2, and H3 as studied by Wang et al. (2015)) over time for (a) ~0.1 pore volume, (b) ~0.5 pore
volume, and (c) ~1.0 pore volume, as represented by plume (concentration) and particles from solving the advection–diffusion equation (ADE) and random walk
particle tracking (RWPT), respectively.
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Table 1). The asymptotic D is fairly consistent with values
derived from fitting a classical one-dimensional (1D) effective
ADE to the BTCs (Table 1). Again, in terms of reproducing
transport process through rough-walled 3D fractures, similar
values of D further verify the validity of the RWPT approach
with velocity derived from solving theMLCL. The dynamicD can
be further used to quantify the asymptotic time scale (Fig. 3b).
The theoretically-derived values of T from (15) are
shorter than the actual time when dynamic D has reached
its asymptotic value (Table 1). The difference can be partially
attributed to the fracture roughness, defined as σb/bbN
where σb is the standard deviation in b, which extends the
asymptotic travel time compared to that predicted by a
parallel plates model (Wang and Cardenas, 2014). However,



Fig. 2. Spatial distribution of actual 3D and corresponding 2D vertically-averaged normalized velocity in the mean flow directions (as indicated by arrows) through
natural fractures (referred to asH1, H2, andH3 studied byWang et al. (2015)). The 3D velocity fieldswere calculated by solving the 3DNavier–Stokes equations and the
2D velocity fields were calculated by solving the modified local cubic law (Wang et al., 2015).
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the roughnesses for H1 (0.39) and H3 (0.40) are similar, which
is greater than H2 (0.31). The difference in L with respect to T
is trivial for H3, while it is significant for H1. This is because
Fig. 3. (a) Breakthrough curves for 3D natural fractures (H1, H2, and H3 as studied by
equation (ADE) and randomwalk particle tracking (RWPT)with velocities from themo
C/C0 is the dimensionless concentration; pore volume is defined in equation (11
time, where dashed red lines indicate the asymptotic time scales with corresponding a
of the references to color in this figure legend, the reader is referred to the web versio
other factors also play an important role in transport processes.
Establishing the contributions from various factors should be a
topic of future studies.
Wang et al. (2015)) simulated from direct solution of the advection-diffusion
dified local cubic law (MLCL) and classical local cubic law (LCL), respectively.
-2). (b) Corresponding dynamic dispersion coefficients (D) increases with
symptotic dispersion coefficients (values shown in Table 1). (For interpretation
n of this article.)
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4. Summary and conclusion

An efficient and accurate quasi-3D random walk particle
tracking algorithm (RWPT) that uses a vertically-integrated 2D
velocity field calculated by solving themodified local cubic law
(MLCL) through natural fractures is presented in this study. In
addition, we simulated the actual transport process by directly
solving the advection–diffusion equation (ADE). The RWPT
with MLCL reproduces the actual solute propagation front and
breakthrough curves. This supports the robustness of RWPT
in capturing transport processes, i.e., observed non-Fickian
behavior. However and as expected, the RWPTwith the classical
LCL overestimates themean velocity. Using the particle tracking
results, we determined the dynamic effective dispersion
coefficient from the first and second spatial moments of
particle location. Following this, we determined the actual
asymptotic scales to distinguish the Fickian from non-
Fickian regimes for rough-walled fractures. This illustrates
that such analysis is possible with a robust and efficient
approach to transport modeling. Because of the smaller
computational demand relative to direct simulations, the
RWPT with the MLCL has potential for application to large,
3D fracture domains, which in turn allows for more
comprehensive analysis of transport processes.
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